在△ABC中,角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,已知向量
m
=(2cos
A
2
,sin
A
2
),
n
=(cos
A
2
,2sin
A
2
),
m
n
=-1.
(1)求角A的值;
(2)若a=2
3
,b=2,求c的值.
考點(diǎn):正弦定理,平面向量數(shù)量積的運(yùn)算
專(zhuān)題:解三角形
分析:(1)利用向量數(shù)量積的公式建立等式求得cosA的值,進(jìn)而求得A.
(2)先由正弦定理求得sinB的值,進(jìn)而求得B,最后利用三角形內(nèi)角和求得C,得知C=B,進(jìn)而求得c=b,則c可求得.
解答: 解:(1)
m
n
=2cos2
A
2
-2sin2
A
2
=-1,
∴2cosA=-1,cosA=-
1
2
,
∵0<A<π,
∴A=
3

(2)由正弦定理知
a
sinA
=
b
sinB
,
∴sinB=
bsinA
a
=
1
2

∵b<a,
∴B<A,
∴B=
π
6
,
∴C=π-A-B=
π
6
,
∴c=b=2.
點(diǎn)評(píng):本題主要考查了正弦定理的應(yīng)用,平面向量的數(shù)量積的運(yùn)算.綜合考查了學(xué)生對(duì)基礎(chǔ)知識(shí)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在x∈[-2,3],使不等式2x-x2≥a成立,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,1]
B、(-∞,-8]
C、[1,+∞)
D、[-8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱臺(tái)ABC-DEF中,CF⊥平面DEF,AB⊥BC.
(Ⅰ)設(shè)平面AEC∩平面DEF=a,求證DF∥a; 
(Ⅱ)若EF=CF=2BC,試同在線段BE上是否存在點(diǎn)G,使得平面DFG⊥平面CDE,若存在,請(qǐng)確定G點(diǎn)的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知式子(2x2+
1
x
5
(Ⅰ)求展開(kāi)式中含
1
x2
的項(xiàng);
(Ⅱ)若(2x2+
1
x
5的展開(kāi)式中各二項(xiàng)式系數(shù)的和比(
x
+
2
x
n的展開(kāi)式中的第三項(xiàng)的系數(shù)少28,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC的邊長(zhǎng)為1,BC邊上的高為AD,若沿AD折成直二面角,求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)△ABC的外接圓的切線AE與BC的延長(zhǎng)線交于點(diǎn)E,∠BAC的平分線與
BC交于點(diǎn)D.求證:
(1)∠ADE=∠DAC
(2)ED2=EC•EB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
1-2x
2x-a
是奇函數(shù).
(Ⅰ)求f(x)的解析式,并判斷f(x)的單調(diào)性(不必證明);
(Ⅱ)解不等式f(2x)+f(1-x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間四邊形ABCD,BC=BD,AC=AD,E是CD邊的中點(diǎn).在AE上的一個(gè)動(dòng)點(diǎn)P,討論BP與CD是否存在垂直關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)與g(x)分別由下表給出,那么f(f(1))=
 
,f(g(2))=
 
,g(f(3)=
 
,g(g(4))=
 

x
 
1 2 3 4 x 1 2 3 4
f(x)
 
2 3 4 1 g(x) 2 1 4 3

查看答案和解析>>

同步練習(xí)冊(cè)答案