為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結果如表:
                性別
是否需要志愿者
需要4030
不需要160270
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的比例;
(2)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?
(3)根據(jù)(2)的結論,能否提出更好的調(diào)查方法來估計該地區(qū)的老年人中需要志愿者提供幫助的老年人比例?說明理由.
P(K2≥k)0.0500.0100.001
3.8416.63510.828
附:K2=
n(ad-bc)
(a+b)(c+d)(a+c)(b+d)
考點:獨立性檢驗
專題:計算題,概率與統(tǒng)計
分析:(1)由樣本的頻率率估計總體的概率,
(2)求K2的觀測值查表,下結論;
(3)由99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關,則可按性別分層抽樣.
解答: 解:(1)調(diào)查的500位老年人中有70位需要志愿者提供幫助,因此在該地區(qū)老年人中,需要幫助的老年人的比例的估計值為
70
500
=14%
     
(2)K2的觀測值  k=
500(40×270-30×160)2
200×300×70×430
≈9.967

 因為9.967>6.635,且P(K2≥6.635)=0.01,
所以有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關.               
(3)根據(jù)(2)的結論可知,該地區(qū)的老年人是否需要志愿者提供幫助與性別有關,并且從樣本數(shù)據(jù)能夠看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時,先確定該地區(qū)老年人中男、女的比例,再把老年人分成男女兩層,并采取分層抽樣方法比簡單隨機抽樣方法更好.
點評:本題考查了抽樣的目的,獨立性檢驗的方法及抽樣的方法選取,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-ax+a2-19=0},集合B={x|x2-5x+6=0},C={x|x2+2x-8=0}.
(1)若A∩B=A∪B,求a的值;
(2)若∅?A∩B,A∩C=∅,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+y≤1
x-y≤1
x+1≥0
,則z=x+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=100×99×98×97×96×95,則a=( 。
A、A1005
B、C1005
C、A1006
D、C1006

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班主任對班級22名學生進行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如下:在喜歡玩電腦游戲的12中,有9人認為作業(yè)多,3人認為作業(yè)不多;在不喜歡玩電腦游戲的10人中,有4人認為作業(yè)多,6人認為作業(yè)不多.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;
(2)能否有90%的把握認為喜歡電腦游戲與作業(yè)多少有關?
(可能用到的公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,可能用到數(shù)據(jù):P(K2≥2.072)=0.15,P(K2≥2.706)=0.10,P(K2≥3.841)=0.05,P(K2≥5.024)=0.025).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)在區(qū)間[-2,3]上是增函數(shù),則y=f(x+5)的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的工序流程圖中,設備采購的下一道工序是( 。
A、設備安裝B、土建設計
C、廠房土建D、工程設計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={0,2},數(shù)列{an}滿足an∈M(n=1,2,3,…),設W=
a1
3
+
a2
32
+…+
a100
3100
,則W一定不屬于區(qū)間( 。
A、[0,1)
B、(0,1]
C、[
1
3
,
2
3
D、(
1
3
,
2
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2011年六月康菲公司由于機器故障,引起嚴重的石油泄漏,造成了海洋的巨大污染,某沿海漁場也受到污染.為降低污染,漁場迅速切斷與海水聯(lián)系,并決定在漁場中投放一種可與石油發(fā)生化學反應的藥劑.已知每投放a(1≤a≤4,且a∈R)個單位的藥劑,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關系式近似于y=af(x),其中f(x)=
16
8-x
-1(0≤x≤4)
5-
1
2
x(4<x≤10)
,若多次投放,則某一時刻水中的藥劑濃度為每次投放的藥劑在相應時刻所釋放的濃度之和.根據(jù)實驗,當水中藥劑的濃度不低于4(克/升)時,它才能起到有效治污的作用.稱為有效凈化;當藥劑在水中釋放的濃度不低于6(毫克/升)且不高于18(毫克/升)時稱為最佳凈化.
(Ⅰ)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(Ⅱ)若第一次投放2個單位的藥劑,6天后再投放a個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試問a的最小值(精確到0.1,參考數(shù)據(jù):
2
取1.4).

查看答案和解析>>

同步練習冊答案