已知方程(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦點在y軸上且焦距為8的雙曲線,則m的值等于
 
考點:雙曲線的標準方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:將雙曲線的方程化為標準方程,利用焦距為8,即可得到結(jié)論.
解答: 解:由題意,當(dāng)m>3時,方程可化為
y2
m-1
-
x2
m-3
=1
,表示焦點在y軸上的雙曲線,則m-1+m-3=16,
∴m=10.
故答案為:10.
點評:本題考查雙曲線的標準方程,考查雙曲線的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由0<lgx≤1可以推出x的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
log2(-x)
f(x-5)
x<0
x>0
,則f(2016)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ax+1+bx+1
ax+bx
(a>b>0)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈[0,2],y∈[0,4],則點M(x,y)落在不等式組
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
所表示的平面區(qū)域內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1,x≤0
lo
g
 
2
x,x>0
,則函數(shù)y=f{f(x)}+1的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式為an=n2•cos
2nπ
3
(n∈N*),其前n項和為Sn
(Ⅰ)求a3n-2+a3n-1+a3n及S3n的表達式;
(Ⅱ)若bn=
S3n
n•2n-1
,求數(shù)列{bn}的前n項和Tn;
(Ⅲ)若cn=
1
4S23n+1-1
,令f(n)=c1+c2+…+cn,求f(n)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,若a2-b2=
3
bc,sinC=2
3
sinB,則A=( 。
A、150°B、60°
C、120°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)
i
1+i
+(1+i)2對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊答案