在平面直角坐標(biāo)上有一點(diǎn)列對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.

(Ⅰ)求點(diǎn)Pn的坐標(biāo);

(Ⅱ)設(shè)拋物線列中的每一條的對(duì)稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過(guò)點(diǎn)Dn(0,n2+1).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為Kn,求的值;

(Ⅲ)設(shè),等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中中的最大數(shù),-265<a0<-125,求數(shù)列{an}的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)上有一點(diǎn)列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)
y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(Ⅰ)求點(diǎn)Pn的坐標(biāo);
(Ⅱ)設(shè)拋物線列C1,C2,C3,…Cn,…中的每一條的對(duì)稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過(guò)點(diǎn)Dn(0,n2+1),記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)上有一點(diǎn)列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)
y=3x+數(shù)學(xué)公式的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-數(shù)學(xué)公式為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(Ⅰ)求點(diǎn)Pn的坐標(biāo);
(Ⅱ)設(shè)拋物線列C1,C2,C3,…Cn,…中的每一條的對(duì)稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過(guò)點(diǎn)Dn(0,n2+1),記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為Kn,求數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)上有一點(diǎn)列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)
y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(Ⅰ)求點(diǎn)Pn的坐標(biāo);
(Ⅱ)設(shè)拋物線列C1,C2,C3,…Cn,…中的每一條的對(duì)稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過(guò)點(diǎn)Dn(0,n2+1),記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市學(xué)軍中學(xué)高三第六次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在平面直角坐標(biāo)上有一點(diǎn)列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)
y=3x+的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(Ⅰ)求點(diǎn)Pn的坐標(biāo);
(Ⅱ)設(shè)拋物線列C1,C2,C3,…Cn,…中的每一條的對(duì)稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過(guò)點(diǎn)Dn(0,n2+1),記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為Kn,求++…+的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案