【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為 ( )
(參考數(shù)據(jù): )
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級一次數(shù)學考試后,為了解學生的數(shù)學學習情況,隨機抽取名學生的數(shù)學成績,制成表所示的頻率分布表.
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計 |
(1)求、、的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學生,并在這名學生中隨機抽取名學生與張老師面談,求第三組中至少有名學生與張老師面談的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題:已知實數(shù), 滿足約束條件,二元一次不等式恒成立,
命題:設數(shù)列的通項公式為,若,使得.
(1)分別求出使命題, 為真時,實數(shù)的取值范圍;
(2)若命題與真假相同,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某超市計劃銷售某種產(chǎn)品,先試銷該產(chǎn)品天,對這天日銷售量進行統(tǒng)計,得到頻率分布直方圖如圖.
(Ⅰ)若已知銷售量低于50的天數(shù)為23,求;
(Ⅱ)廠家對該超市銷售這種產(chǎn)品的日返利方案為:每天固定返利45元,另外每銷售一件產(chǎn)品,返利3元;頻率估計為概率.依此方案,估計日返利額的平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的離心率為,且過點.
(1)求的方程;
(2)若動點在直線上,過作直線交橢圓于兩點,使得,再過作直線,證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),實數(shù)是常數(shù).
(Ⅰ)若=2,函數(shù)圖像上是否存在兩條互相垂直的切線,并說明理由.
(Ⅱ)若在上有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的多面體中,四邊形ABB1A1和ACC1A1都為矩形
(Ⅰ)若AC⊥BC,證明:直線BC⊥平面ACC1A1;
(Ⅱ)設D、E分別是線段BC、CC1的中點,在線段AB上是否存在一點M,使直線DE∥平面A1MC?請證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線(其中為參數(shù), 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求的直角坐標方程,并求的焦點的直角坐標;
(2)已知點,若直線與相交于兩點,且,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com