【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為 ( )

(參考數(shù)據(jù):

A. B. C. D.

【答案】B

【解析】 ,故選B.

【點晴】本題主要考查程序框和三角運算,屬于較易題型.高考中對于程序框圖的考查主要有:輸出結果型、完善框圖型、確定循環(huán)變量取值型、實際應用型等,最常見的題型是以循環(huán)結構為主,求解程序框圖問題的關鍵是能夠應用算法思想列出并計算每一次循環(huán)結果,注意輸出值和循環(huán)變量以及判斷框中的限制條件的關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級一次數(shù)學考試后,為了解學生的數(shù)學學習情況,隨機抽取學生的數(shù)學成績,制成表所示的頻率分布.

組號

分組

頻數(shù)

頻率

第一組

第二組

第三組

第四

第五組

合計

(1)、、值;

(2)若從第三、四、五中用分層抽樣方法抽取學生,在這學生中隨機抽取學生與張老師面談,求第三組中至少有學生與張老師面談的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題:已知實數(shù), 滿足約束條件,二元一次不等式恒成立,

命題:設數(shù)列的通項公式為,若,使得

(1)分別求出使命題, 為真時,實數(shù)的取值范圍;

(2)若命題真假相同,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的極值;

(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市計劃銷售某種產(chǎn)品,先試銷該產(chǎn)品天,對這天日銷售量進行統(tǒng)計,得到頻率分布直方圖如圖.

(Ⅰ)若已知銷售量低于50的天數(shù)為23,求;

(Ⅱ)廠家對該超市銷售這種產(chǎn)品的日返利方案為:每天固定返利45元,另外每銷售一件產(chǎn)品,返利3元;頻率估計為概率.依此方案,估計日返利額的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的離心率為,且過點.

(1)求的方程;

(2)若動點在直線上,過作直線交橢圓兩點,使得,再過作直線,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),實數(shù)是常數(shù).

(Ⅰ)若=2,函數(shù)圖像上是否存在兩條互相垂直的切線,并說明理由.

(Ⅱ)若上有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中,四邊形ABB1A1和ACC1A1都為矩形
(Ⅰ)若AC⊥BC,證明:直線BC⊥平面ACC1A1;
(Ⅱ)設D、E分別是線段BC、CC1的中點,在線段AB上是否存在一點M,使直線DE∥平面A1MC?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線(其中為參數(shù), 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求的直角坐標方程,并求的焦點的直角坐標;

(2)已知點,若直線相交于兩點,且,求的面積.

查看答案和解析>>

同步練習冊答案