分析 利用組合數(shù)公式的性質(zhì)Cn+13-cn3=Cn2,可得 C22+C32+C42+…+C192 =C33 +(C43-C33)+(C53-C43)+…+(C203-C193),化簡得到結(jié)果.
解答 解:C${\;}_{2}^{0}$+C${\;}_{3}^{1}$+C${\;}_{4}^{2}$+C${\;}_{5}^{3}$+C${\;}_{6}^{4}$+…+C${\;}_{18}^{16}$+C${\;}_{19}^{17}$
=${C}_{2}^{2}$+${C}_{3}^{2}$+${C}_{4}^{2}$+${C}_{5}^{2}$+${C}_{6}^{2}$+…+${C}_{18}^{2}$+${C}_{19}^{2}$,
∵Cn+13-cn3=Cn2,
∴C22+C32+C42+…+C192
=C33 +(C43-C33)+(C53-C43)+…+(C203-C193)
=C203 =$\frac{20×19×18}{3×2}$=1140,
故答案為:1140.
點評 本題主要考查組合數(shù)公式的性質(zhì)應用,利用了組合數(shù)公式的性質(zhì)Cn+13-cn3=Cn2,即Cn2 +cn3 =Cn+13,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 48 | B. | 36 | C. | 30 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x<-1或1<x<2} | B. | {x|1<x<2} | C. | {x|-1<x<2且x≠1} | D. | {x|x<2且x≠1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | 2$\sqrt{5}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | -1或2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -i | B. | i | C. | $\frac{1}{2}$+$\frac{1}{2}$i | D. | $\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com