設(shè)全集I={a,b,c,d},集合A與B是I的子集,若A∩B={a,b},則稱(A,B)為“理想配集”,所有“理想配集”的個(gè)數(shù)為多少?
考點(diǎn):子集與真子集
專題:集合,排列組合
分析:由“理想配集”的概念,按集合A的情況進(jìn)行分類:A={ab}或A={a,bc}或A={a,b,d}或A={a,b,c,d}共四類,找出對(duì)應(yīng)的每一類中的情況作和得答案.
解答: 解:按集合A的情況進(jìn)行分類:A={ab}或A={a,b,c}或A={a,b
d}或A={a,bc,d}共四類.
(1)當(dāng)A={ab}時(shí),有B={ab}或B={a,bc}或B={a,b,d}
B={ab,c,d}共4種情況;
(2)當(dāng)A={a,bc}時(shí),有B={ab}或B={a,bd}共2種情況;
(3)當(dāng)A={a,b,d}時(shí),有B={ab}或B={a,b,c}共2種情況;
(4)當(dāng)A={a,b,c,d}時(shí),有B={a,b},只有1種情況.
由分類加法計(jì)數(shù)原理,知“理想配集”共有N=4+2+2+1=9(個(gè)).
點(diǎn)評(píng):本題考查了子集與真子集的概念,考查了分類加法計(jì)數(shù)原理,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M1(0,0),M2(1,0).以M1為圓心,M1M2為半徑作圓交x軸于點(diǎn)M3(異于M2),記作⊙M1;以M2為圓心,M2M3為半徑作圓交x軸于點(diǎn)M4(異于M3),記作⊙M2;…;以Mn為圓心,MnMn+1為半徑作圓交x軸于點(diǎn)Mn+2(異于Mn+1),記作⊙Mn.當(dāng)n∈N*時(shí),過原點(diǎn)作傾斜角為30°的直線與⊙Mn交于An,Bn.考察下列論斷:
當(dāng)n=1時(shí),A1B1=2;當(dāng)n=2時(shí),A2B2=
15
;當(dāng)n=3時(shí),A3B3=
35×42+23-1
3
;當(dāng)n=4時(shí),A4B4=
 

由以上論斷推測(cè)一個(gè)一般的結(jié)論:對(duì)于n∈N*,AnBn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩),經(jīng)預(yù)測(cè),一個(gè)橋墩的費(fèi)用為32萬元,相鄰兩個(gè)橋墩之間的距離均為x,且相鄰兩個(gè)橋墩之間的橋面工程費(fèi)用為(1+x)x萬元,假設(shè)所有橋墩都視為點(diǎn)且不考慮其它因素,記工程總費(fèi)用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=80米時(shí),需要新建多少個(gè)橋墩才能使y最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線2ax+by-2=0(a>0,b>0)被圓x2+y2-2x-4y-4=0截得的弦長(zhǎng)為6,m=b+
2
a
,n=a+
1
2b
,則m+n的最小值為.
A、
9
2
B、5
C、
11
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,a2=
1
2
,并且{an}滿足an(an-1+an+1)=2an+1an-1(n≥2)則數(shù)列{an}的第2014項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}和等比數(shù)列{bn}首項(xiàng)都是1,公差和公比都是2,則ab1+ab2+ab4=(  )
A、17B、19C、21D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f (x)=ax-ex(a∈R),g(x)=
1nx
x

(I)求函數(shù)f (x)的單調(diào)區(qū)間;
(Ⅱ)?x0∈(0,+∞),使不等式f (x)≤g(x)-ex成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)f(x)與g(x)的圖象相同的是(  )
A、f(x)=x,g(x)=(
x
2
B、f(x)=x2,g(x)=(x+1)2
C、f(x)=1,g(x)=x0
D、f(x)=|x|,g(x)=
x
-x
(x≥0)
(x<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2-ax+2a=0的兩個(gè)根均大于1,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案