【題目】某地級市共有中小學生,其中有學生在年享受了“國家精準扶貧”政策,在享受“國家精準扶貧”政策的學生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進一步幫助這些學生,當?shù)厥姓O立“專項教育基金”,對這三個等次的困難學生每年每人分別補助元、元、元,經(jīng)濟學家調查發(fā)現(xiàn),當?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學生中有會脫貧,脫貧后將不再享受“精準扶貧”政策,很困難的學生中有轉為一般困難,特別困難的學生中有轉為很困難.現(xiàn)統(tǒng)計了該地級市年到年共年的人均可支配年收入,對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中統(tǒng)計量的值,其中年份取時代表年,與(萬元)近似滿足關系式,其中,為常數(shù).(年至年該市中學生人數(shù)大致保持不變)
其中,
(1)估計該市年人均可支配年收入;
(2)求該市年的“專項教育基金”的財政預算大約為多少?
附:對于一組具有線性相關關系的數(shù)據(jù),,,,其回歸直線方程的斜率和截距的最小二乘估計分別為,
【答案】(1)2.8萬(2)1624萬
【解析】
(1)根據(jù)表中數(shù)據(jù)求出,由得,由最小二乘法求出,再代入求出即可得到與(萬元)的關系式;代入即可;(2)根據(jù)題意求出年時該市享受“國家精準扶貧”政策的學生人數(shù),然后即可求得一般困難、很困難、特別困難的學生人數(shù),按照增長比例關系求解年該市一般困難、很困難、特別困難的學生人數(shù),即可求得財政預算.
(1)因為,
所以
由得,
所以,,
所以,所以
當時,年人均可支配年收入(萬)
(2)由題意知年時該市享受“國家精準扶貧”政策的學生共人
一般困難、很困難、特別困難的中學生依次有人,人,人,
年人均可支配收入比年增長
所以年該市特別困難的中學生有:人
很困難的中學生有:人
一般困難的中學生有:人
所以年的“專項教育基金”的財政預算大約為萬
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中:
①若,滿足,則的最大值為;
②若,則函數(shù)的最小值為
③若,滿足,則的最小值為
④函數(shù)的最小值為
正確的有__________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知,(單位:米),要求圓M與分別相切于點B,D,圓與分別相切于點C,D.
(1)若,求圓的半徑;(結果精確到0.1米)
(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當多大時,總造價最低?最低總造價是多少?(結果分別精確到0.1°和0.1千元)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國海軍,正在以不可阻擋的氣魄向深藍進軍。在中國海軍加快建設的大背景下,國產(chǎn)水面艦艇噸位不斷增大、技術日益現(xiàn)代化,特別是國產(chǎn)航空母艦下水,航母需要大量高素質航母艦載機飛行員。為此中國海軍在全國9省9所優(yōu)質普通高中進行海航班建設試點培育航母艦載機飛行員。2017年4月我省首屆海軍航空實驗班開始面向全省遴選學員,有10000名初中畢業(yè)生踴躍報名投身國防,經(jīng)過文化考試、體格測試、政治考核、心理選拔等過程篩選,最終招收50名學員。培養(yǎng)學校在關注學員的文化素養(yǎng)同時注重學員的身體素質,要求每月至少參加一次野營拉練活動(下面簡稱“活動”)并記錄成績.10月某次活動中海航班學員成績統(tǒng)計如圖所示:
(Ⅰ)根據(jù)圖表,試估算學員在活動中取得成績的中位數(shù)(精確到);
(Ⅱ)根據(jù)成績從、兩組學員中任意選出兩人為一組,若選出成績分差大于,則稱該組為“幫扶組”,試求選出兩人為“幫扶組”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為考查某種疫苗預防疾病的效果,進行動物實驗,得到統(tǒng)計數(shù)據(jù)如下:
未發(fā)病 | 發(fā)病 | 總計 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
總計 | 50 | 50 | 100 |
現(xiàn)從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為.
(1)求列聯(lián)表中的數(shù)據(jù),,,的值;
(2)判斷疫苗是否有效?
(3)能夠有多大把握認為疫苗有效?
(參考公式,)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓及點,若直線與橢圓交于點,且( 為坐標原點),橢圓的離心率為.
(1)求橢圓的標準方程;
(2)若斜率為的直線交橢圓于不同的兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)為“函數(shù)”。
(1)試判斷函數(shù)是否是“函數(shù)”并說明理由;
(2)若函數(shù)為“函數(shù)”,求實數(shù)的取值范圍;
(3)若函數(shù)為“函數(shù)”,且.
求證();
()對任意,都有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com