設(shè)不等式組
x-2y+2≥0
x≤4
y≥-2
表示的平面區(qū)域?yàn)镈,則區(qū)域D的面積為(  )
A、10B、15C、20D、25
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,求出對(duì)應(yīng)的交點(diǎn)坐標(biāo),即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,則區(qū)域D為△ABC,
x=4
y=-2
,得C(4,-2),
x-2y+2=0
x=4
,得
x=4
y=3
,即A(4,3),
x-2y+2=0
y=-2
,得
x=-6
y=-2
,即B(-6,-2),
則三角形的面積S=
1
2
AC•BC=
1
2
×5×10=25
,
故選:D
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,作出不等式組對(duì)應(yīng)的平面區(qū)域是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|x+1|-|x-2|≤1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等邊△ABC的邊長(zhǎng)為3,M是△ABC的外接圓上的動(dòng)點(diǎn),則
AB
AM
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某物流公司運(yùn)費(fèi)計(jì)算框圖如圖所示,其中d為按運(yùn)送里程給運(yùn)費(fèi)打的折扣,n為運(yùn)送物品的件數(shù).現(xiàn)有顧客辦理A、B兩件物品遞送,其中A物品運(yùn)送單價(jià)為p1=0.02元/千克•千米,重量為w1=5千克,運(yùn)送里程為s1=250千米;B物品運(yùn)送單價(jià)為p2=0.03元/千克•千米,重量為w2=6千克,運(yùn)送里程為s2=500千米.則按運(yùn)費(fèi)計(jì)算框圖算出該顧客應(yīng)付運(yùn)費(fèi)sum=( 。
A、94.5元B、97元
C、103.5元D、106元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=4|x|+x2+a有唯一的零點(diǎn),則實(shí)數(shù)a的值為(  )
A、0B、-1C、-2D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(
3
,1),
b
=(2,-2),若(λ
a
+
b
)⊥(λ
a
-
b
),則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件
x-y≥0
x+y≥0
2x-y≤2
,則x2+(y-1)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β均為銳角,且cos(α+β)=
sinα
sinβ
,則tanα的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(α-
β
2
)=
1
9
,sin(
α
2
)=
2
3
,且
π
4
<α<
π
2
,-
π
4
<β<
π
4
,求cos(α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案