已知直線l過(guò)兩點(diǎn)A(-3,0),B(3,8).
(1)求直線l的方程.
(2)求以點(diǎn)C(-1,1)為圓心,且與直線l相切的圓的方程.
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:(1)利用兩點(diǎn)式方程能求出直線l的方程.
(2)求出點(diǎn)C(-1,1)到直線4x-3y+12=0的距離,由此能求出以點(diǎn)C(-1,1)為圓心,且與直線l相切的圓的方程.
解答: 解:(1)∵直線l過(guò)兩點(diǎn)A(-3,0),B(3,8).
∴直線l的方程為:
y-0
x+3
=
8-0
3+3

整理,得4x-3y+12=0.
(2)點(diǎn)C(-1,1)到直線4x-3y+12=0的距離d=
|-4-3+12|
16+9
=1,
∴以點(diǎn)C(-1,1)為圓心,且與直線l相切的圓的方程為:
(x+1)2+(y-1)2=1.
點(diǎn)評(píng):本題考查直線方程和圓的方程的求法,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市居民生活用水收費(fèi)標(biāo)準(zhǔn)如下:
用水量t(噸)每噸收費(fèi)標(biāo)準(zhǔn)(元)
不超過(guò)5噸部分m
超過(guò)5噸不超過(guò)10噸部分3
超過(guò)10噸部分n
已知某用戶一月份用水量為8噸,繳納的水費(fèi)為19元;二月份用水量為12噸,繳納的水費(fèi)為35元.設(shè)某用戶月用水量為t噸,交納的水費(fèi)為y元.
(1)寫出y關(guān)于t的函數(shù)關(guān)系式;
(2)若某用戶希望三月份繳納的水費(fèi)不超過(guò)30元,求該用戶三月份最多可以用多少噸水?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙二人同時(shí)從A地趕往B地,甲先騎自行車到中點(diǎn)后改為跑步,而乙則是先跑步,到中點(diǎn)后改為騎自行車,最后二人同時(shí)到達(dá)B地,甲乙兩人騎自行車速度都大于各自跑步速度,又知甲騎自行車比乙騎自行車的速度快.若某人離開A地的距離S與所用時(shí)間t的函數(shù)用圖象表示如下,則在下列給出的四個(gè)函數(shù)中

甲乙二人的圖象只可能(  )
A、甲是圖①,乙是圖②
B、甲是圖①,乙是圖④
C、甲是圖③,乙是圖②
D、甲是圖③,乙是圖④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

邊長(zhǎng)為a的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,則這個(gè)定值為
3
2
a
;推廣到空間,棱長(zhǎng)為a的正四面體內(nèi)任一點(diǎn)到各面距離之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算sin
6
=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lnx的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對(duì)稱,則g(2x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列關(guān)于三個(gè)數(shù)log0.53,lnπ,(a2+3)0(a∈R)的大小關(guān)系,正確的是( 。
A、log0.53<(a2+3)0<lnπ
B、log0.53<lnπ<(a2+3)0
C、(a2+3)0<log0.53<lnπ
D、lnπ<(a2+3)0<log0.53

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=|x+1|-|x+a|是R上的奇函數(shù)但不是偶函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

log67
 
log76(填“>”,“=”,“<”).

查看答案和解析>>

同步練習(xí)冊(cè)答案