如圖是正方體的平面展開圖,在這個正方體中,正確的命題是( 。
A、BD與CF成60°角
B、BD與EF成60°角
C、AB與CD成60°角
D、AB與EF成60°角
考點:異面直線及其所成的角
專題:空間角
分析:由正方體的平面展開圖,還原成正方體,利用正方體的結(jié)構(gòu)特征,得到BD與CF成0°角,BD與EF成90°角,AB與CD成60°角,AB與EF成90°角.
解答: 解:由正方體的平面展開圖,
還原成如圖所示的正方體,
∵BD∥CF,∴BD與CF成0°角,故A錯誤;
∵BD∥平面A1EDF,EF?平面A1EDF,
∴BD與EF成90°角,故B錯誤;
∵AE∥CD,∴∠BAE是AB與CD所成角,
∵△ABE是等邊三角形,∴∠BAE=60°,
∴AB與CD成60°角,故C正確;
∵AB∥A1D,又A1D⊥EF,
∴AB與EF成90°角,故D錯誤.
故選:C.
點評:本題考查空間點、線、面的位置關(guān)系及學(xué)生的空間想象能力、求異面直線角的能力,解題時要注意向量法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2x+
4
x
(x>0),求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
),x∈[0,π]
(1)求函數(shù)f(x)的最小值及取最小值時相應(yīng)的x的值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,平面PAD⊥平面ABCD,∠ABC=∠BCD=90°,PA=PD=DC=CB=
1
2
AB,E是BP的中點.
(1)求證:PA⊥BD;
(2)求CE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體OABC各棱長為1,D是棱OA的中點,則異面直線BD與AC所成角的余弦值(  )
A、
3
3
B、
1
4
C、
3
6
D、
2
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
為不共線的單位向量,其夾角θ,設(shè)
AB
a
+
b
AC
=
a
b
,有下列四個命題:
p1:|
a
+
b
|>|
a
-
b
|?θ∈(0,
π
2
);p2:|
a
+
b
|>|
a
-
b
|?θ∈(
π
2
,π);
p3:若A,B,C共線?λ+μ=1;p4:若A,B,C共線?λ•μ=1.其中真命題的是(  )
A、p1,p4
B、p1,p3
C、p2,p3
D、p2,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,π),求證:2sin2α≤
sinα
1-cosα
,試用綜合法和分析法分別證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種波的傳播是由曲線f(x)=Asin(ωx+φ)(A>0)來實現(xiàn)的,我們把函數(shù)解析式f(x)=Asin(ωx+φ)稱為“波”,把振幅都是A 的波稱為“A類波”,把兩個解析式相加稱為波的疊加.
(1)已知“1 類波”中的兩個波f1(x)=sin(x+φ1)與f2(x)=sin(x+φ2)疊加后仍是“1類波”,求φ21的值;
(2)在“A類波“中有一個是f1(x)=sinx,從 A類波中再找出兩個不同的波(每兩個波的初相φ都不同)使得這三個不同的波疊加之后是“平波”,即疊加后y=0,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=-1,an+1=an+
1
n(n+1)
,n∈N*,寫出前5項,并寫出這個數(shù)列的一個通項公式.

查看答案和解析>>

同步練習(xí)冊答案