已知點(diǎn)M(x,y)是平面區(qū)域
x≥0
y≥0
x-y+1≥0
2x+y-4≤0
內(nèi)的動(dòng)點(diǎn),則(x+1)2+(y+1)2的最大值是(  )
A、10
B、
49
5
C、
13
D、13
考點(diǎn):簡(jiǎn)單線(xiàn)性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,設(shè)z=(x+1)2+(y+1)2,利用z的幾何意義即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,
設(shè)z=(x+1)2+(y+1)2,
則z的幾何意義為區(qū)域內(nèi)的動(dòng)點(diǎn)P(x,y)到定點(diǎn)C(-1,-1)的距離的平方,
則有圖象可知,當(dāng)P位于點(diǎn)A時(shí),|AC|最大,
x-y+1=0
2x+y-4=0
,解得
x=1
y=2
,
即A(1,2),
∴zmax=(x+1)2+(y+1)2=4+9=13,
故選:D.
點(diǎn)評(píng):本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用z的幾何意義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0<a<1,則不等式(a-x)(x-
1
a
)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
AD
BC
=0,|
AB
|=5,|
BC
|=10,
BD
=
2
3
DC
,點(diǎn)P滿(mǎn)足
AP
=m
AB
+(1-m)
AC
,則
AP
AD
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,AD=1,∠BAD=60°,
BC
=3
BF
.若
BD
AF
=-3,則
AB
的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)為奇函數(shù)的是( 。
A、y=x|x|
B、y=x2-cosx
C、y=xsinx
D、y=ex+e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在二面角α-AB-β的棱上有A、B兩點(diǎn),直線(xiàn)AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,CD=2
17
,則直線(xiàn)CD與平面α所成角的正弦值為(  )
A、
697
34
B、
3
51
64
C、
697
64
D、
3
51
34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F(x)=f(x)+f(-x),且f′(x)存在,則F′(x)是( 。
A、奇函數(shù)
B、偶函數(shù)
C、非奇非偶的函數(shù)
D、不能判定其奇偶性的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求過(guò)點(diǎn)A(1,-1)且與圓C:x2+y2=100切于點(diǎn)B(8,6)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={a,b},N={c,d},定義M與N的一個(gè)運(yùn)算“•”為:M•N={x|x=mn,m∈M,n∈N}.
(1)對(duì)于交集,有性質(zhì)A∩B=B∩A;類(lèi)比以上結(jié)論是否有M•N=N•M?并證明你的結(jié)論.
(2)舉例驗(yàn)證(A•B)•C=A•(B•C).

查看答案和解析>>

同步練習(xí)冊(cè)答案