14.將一枚骰子先后拋擲兩次得到的點(diǎn)數(shù)依次記為a,b,則直線ax+by=0與圓(x-3)2+y2=3無公共點(diǎn)的概率為$\frac{2}{3}$.

分析 將直線方程代入圓的方程,△<0,求得b<$\sqrt{2}$a,利用古典概型概率公式,即可求得概率為P=1-$\frac{1}{3}$=$\frac{2}{3}$,

解答 解:$\left\{\begin{array}{l}{(x-3)^{2}+{y}^{2}=3}\\{ax+by=0}\end{array}\right.$,消去y,得$\frac{{a}^{2}+^{2}}{^{2}}$x2-6x+6=0,
若圓與直線無公共點(diǎn),則△=(-6)2-4×6×$\frac{{a}^{2}+^{2}}{^{2}}$<0,化簡得b<$\sqrt{2}$a;
(x,y)共有36種組合;滿足b>$\sqrt{2}$a;條件的組合有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,6),共有12種,
∴滿足b>$\sqrt{2}$a的概率為$\frac{12}{36}$=$\frac{1}{3}$,
∴該古典概型的概率為P=1-$\frac{1}{3}$=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,考查古典概型概率公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知α為銳角,且sin2α+$\sqrt{3}$cos2α=1,函數(shù)f(x)=2x•cos(α-$\frac{π}{4}$)+sin(α+$\frac{π}{4}$).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)數(shù)列{an}的首項(xiàng)a1=1,an+1=f(an)(n∈N*),求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知變量x,y滿足不等式組$\left\{\begin{array}{l}{3x+y-15≤0,}&{\;}\\{x-3y-5≤0,}&{\;}\\{x≥a,}&{\;}\end{array}\right.$使得y≤3x恒成立的實(shí)數(shù)a的最小值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列{an}中,a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,類比上述性質(zhì),相應(yīng)地在等比數(shù)列{bn}中,若b9=1,則成立的等式是( 。
A.b1b2…bn=b1b2…b17-n (n<17,n∈N*
B.b1b2…bn=b1b2…b18-n(n<18,n∈N*
C.b1+b2+…+bn=b1+b2+…+b17-n(n<17,n∈N*
D.b1+b2+…+bn=b1+b2-1+…+b18-n(n<18,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,如圖,在四棱錐S-ABCD中,底面梯形ABCD中,BC∥AD,平面SAB⊥平面ABCD,△SAB是等邊三角形,已知$AC=2AB=4,BC=2AD=2DC=2\sqrt{5}$.
(I)求證:平面SAB⊥平面SAC;
(II)求二面角B-SC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)的定義域?yàn)镈,對給定的正數(shù)k,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:①f(x)在[a,b]內(nèi)是單調(diào)函數(shù);②f(x)在[a,b]上的值域?yàn)閇ka,kb],則稱區(qū)間[a,b]為y=f(x)的k級“理想?yún)^(qū)間”.下列結(jié)論錯(cuò)誤的是(  )
A.函數(shù)f(x)=x2(x∈R)存在1級“理想?yún)^(qū)間”
B.函數(shù)f(x)=ex(x∈R)不存在2級“理想?yún)^(qū)間”
C.函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$(x≥0)存在3級“理想?yún)^(qū)間”
D.函數(shù)f(x)=tanx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)不存在4級“理想?yún)^(qū)間”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若輸入n=4,執(zhí)行如圖所示的程序框圖,輸出的s=( 。
A.10B.16C.20D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$sin(\frac{π}{6}-α)-cosα=\frac{1}{3}$,則$cos(2α+\frac{π}{3})$=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.“累積凈化量(CCM)”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為50%時(shí)對顆粒物的累積凈化量,以克表示.根據(jù)GB/T18801-2015《空氣凈化器》國家標(biāo)準(zhǔn),對空氣凈化器的累積凈化量(CCM)有如下等級劃分:
 累積凈化量(克) (3,5] (5,8] (8,12] 12以上
 等級 P1 P2 P3 P4
為了了解一批空氣凈化器(共2000臺(tái))的質(zhì)量,隨機(jī)抽取n臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這n臺(tái)機(jī)器的
累積凈化量都分布在區(qū)間(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14],均勻分組,其中累積凈化量在(4,6]的所有數(shù)據(jù)有:4.5,4.6,5.2,5.7和5.9,并繪制了如下頻率分布直方圖.
(Ⅰ)求n的值及頻率分布直方圖中的x值;
(Ⅱ)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺(tái))中等級為P2的空氣凈化器有多少臺(tái)?
(Ⅲ)從累積凈化量在(4,6]的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級為P2的概率.

查看答案和解析>>

同步練習(xí)冊答案