【題目】如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:AF∥平面PCE;
(Ⅱ)若二面角P﹣CD﹣B為45°,AD=2,CD=3,求點(diǎn)F到平面PCE的距離.
【答案】解:(Ⅰ)取PC中點(diǎn)M,連接ME、MF. ∵ ,
∴AE∥FM,且AE=FM,
即四邊形AFME是平行四邊形,
∴AF∥EM,∵AF平在PCE,
∴AF∥平面PCE.
(Ⅱ)∵PA⊥平面AC,CD⊥AD,
根據(jù)三垂線定理知,CD⊥PD,
∴∠PDA是二面角,
P﹣CD﹣B的平面角,則∠PDA=45°
于是,△PAD是等腰直角三角形,
∴AF⊥PD,又AF⊥CD,
∴AF⊥面PCD.而EM∥AF,
∴EM⊥面PCD.又EM平面PEC,
∴面PEC⊥面PCD.…(8分)
在面PCD內(nèi)過F作FH⊥PC于H,
則FH為點(diǎn)F到平面PCE的距離.
由已知,PD=2 ,PF= .
∵△PFH∽△PCD,
∴
【解析】(Ⅰ)取PC中點(diǎn)M,連接ME、MF.由 ,知AE∥FM,且AE=FM,由此能證明四邊形AFME是平行四邊形,從而得到AF∥平面PCE.(Ⅱ)由PA⊥平面AC,CD⊥AD,根據(jù)三垂線定理知,CD⊥PD,故∠PDA是二面角P﹣CD﹣B的平面角,所以△PAD是等腰直角三角形,由AF⊥PD,AF⊥CD,得到面PEC⊥面PCD,由此入手能夠求出點(diǎn)F到平面PCE的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.
(Ⅰ)求證:AC∥ED;
(Ⅱ)求證:DC⊥BC;
(Ⅲ)當(dāng)BC=CD=DE=1時(shí),求二面角A﹣BE﹣D的余弦值;
(Ⅳ)在棱AB上是否存在點(diǎn)P滿足EP∥平面BDC;
(Ⅴ)設(shè) =k,是否存在k滿足平面ABE⊥平面CBE?若存在求出k值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y2=8ax(a>0),直線l傾斜角是45°且過拋物線C1的焦點(diǎn),直線l被拋物線C1截得的線段長是16,雙曲線C2: ﹣ =1的一個(gè)焦點(diǎn)在拋物線C1的準(zhǔn)線上,則直線l與y軸的交點(diǎn)P到雙曲線C2的一條漸近線的距離是( )
A.2
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)設(shè)max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國古代數(shù)學(xué)名著《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑ABCD中,AB⊥平面BCD,且AB=BC=CD,則異面直線AC與BD所成角的余弦值為( )
A.
B.﹣
C.
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾個(gè)月前,成都街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題,然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋?為此,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如表:
年齡 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
受訪人數(shù) | 5 | 6 | 15 | 9 | 10 | 5 |
支持發(fā)展 | 4 | 5 | 12 | 9 | 7 | 3 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系;
年齡低于35歲 | 年齡不低于35歲 | 合計(jì) | |
支持 | |||
不支持 | |||
合計(jì) |
(2)若對(duì)年齡在[15,20)[20,25)的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,記選中的4人中支持發(fā)展共享單車的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望. 參考數(shù)據(jù):
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2= ,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解一片經(jīng)濟(jì)林的生長情況,隨機(jī)抽測(cè)了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測(cè)的60株樹木中,有株樹木的底部周長小于110cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0,a≠1).
(1)求函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)單調(diào)增區(qū)間;
(3)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com