設(shè)橢圓 的離心率為,點(diǎn),0),(0,),原點(diǎn)到直線的距離為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為(,0),點(diǎn)在橢圓上(與、均不重合),點(diǎn)在直線上,若直線的方程為,且,試求直線的方程.
,直線的方程為
解 (Ⅰ)由 
由點(diǎn),0),(0,)知直線的方程為,
于是可得直線的方程為  
因此,得,,,
所以橢圓的方程為  
(Ⅱ)由(Ⅰ)知、的坐標(biāo)依次為(2,0)、,
因?yàn)橹本經(jīng)過點(diǎn),所以,得,
即得直線的方程為 
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122647670375.gif" style="vertical-align:middle;" />,所以,即  
設(shè)的坐標(biāo)為,則
,即直線的斜率為4  
又點(diǎn)的坐標(biāo)為,因此直線的方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,點(diǎn),曲線,若曲線與線段有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)如圖△ABC為直角三角形,點(diǎn)M在y軸上,且,點(diǎn)C在x軸上移動(dòng),(I)求點(diǎn)B的軌跡E的方程;(II)過點(diǎn)的直線l與曲線E交于P、Q兩點(diǎn),
設(shè)的夾角為
的取值范圍;  (III)設(shè)以點(diǎn)N(0,m)為圓心,以
半徑的圓與曲線E在第一象限的交點(diǎn)H,若圓在點(diǎn)H處的
切線與曲線E在點(diǎn)H處的切線互相垂直,求實(shí)數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:,且. (I)求動(dòng)點(diǎn)P的軌跡G的方程;(II)過點(diǎn)B的直線與軌跡G交于兩點(diǎn)M,N.試問在x軸上是否存在定點(diǎn)C ,使得 為常數(shù).若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)    
點(diǎn)在橢圓上,直線與直線垂直,O為坐標(biāo)原點(diǎn),直線OP的傾斜角為,直線的傾斜角為.
(I)證明: 點(diǎn)是橢圓與直線的唯一交點(diǎn);        
(II)證明:構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,從點(diǎn)發(fā)出的光線沿平行于拋物線的軸的方向射向此拋物線上的點(diǎn)P,反射后經(jīng)焦點(diǎn)F又射向拋物線上的點(diǎn)Q,再反射后沿平行于拋物線的軸的方向射向直線再反射后又射回點(diǎn)M,則   x0=          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



查看答案和解析>>

同步練習(xí)冊(cè)答案