若一三角形三邊所在的直線方程分別為x+2y-5=0,y-2=0,x+y-4=0,則能夠覆蓋此三角形且面積最小的圓的方程為   
【答案】分析:確定三角形的三個頂點坐標,能夠覆蓋此三角形且面積最小是三角形的外接圓,利用待定系數(shù)法,即可求得結(jié)論.
解答:解:∵三角形三邊所在的直線方程分別為x+2y-5=0,y-2=0,x+y-4=0,
∴可得三角形的三個頂點分別是(1,2),(2,2),(3,1)
能夠覆蓋此三角形且面積最小是三角形的外接圓,設(shè)方程為x2+y2+Dx+Ey+F=0,則
,∴
∴能夠覆蓋此三角形且面積最小的圓的方程為x2+y2-3x-y=0
故答案為:x2+y2-3x-y=0
點評:本題考查圓的方程,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知點A(一1,1),P是動點,且三角形POA的三邊所在直線的斜率滿足kOP+kOA=kPA
(I)求點P的軌跡C的方程;
(Ⅱ)若Q是軌跡C上異于點P的一個點,且
PQ
OA
,直線OP與QA交于點M,試探究:點M的橫坐標是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一三角形三邊所在的直線方程分別為x+2y-5=0,y-2=0,x+y-4=0,則能夠覆蓋此三角形且面積最小的圓的方程為
x2+y2-3x-y=0
x2+y2-3x-y=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若一三角形三邊所在的直線方程分別為x+2y-5=0,y-2=0,x+y-4=0,則能夠覆蓋此三角形且面積最小的圓的方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年高考數(shù)學備考復習卷B7:圓與方程(解析版) 題型:填空題

若一三角形三邊所在的直線方程分別為x+2y-5=0,y-2=0,x+y-4=0,則能夠覆蓋此三角形且面積最小的圓的方程為   

查看答案和解析>>

同步練習冊答案