分析 (1)欲證明{bn}是等差數(shù)列,只需推知該數(shù)列的首項(xiàng)和公差即可;
(2)由(1)可求得bn=2n,繼而可知an=2n-1,從而可得{cn}的通項(xiàng)公式,然后利用裂項(xiàng)相消法即可求得答案.
解答 證明:(1)由an+2=2an+1-an+2得an-an+1=an+1-an+2+2,即bn+1=bn+2,又b1=a2-a1=1.
所以{bn}是首項(xiàng)為1,公差為2的等差數(shù)列;
解:(2)由(1)得,bn=1+2(n-1)=2n-1,
由bn=an+1-an得,an+1-an=2n-1,
則a2-a1=1,a3-a2=3,a4-a3=5,…,an-an-1=2(n-1)-1,
所以,an-a1=1+3+5+…+2(n-1)-1=$\frac{(n-1)(1+2n-3)}{2}$=(n-1)2,
又a1=1,
所以{an}的通項(xiàng)公式an=(n-1)2+1=n2-2n+2.
所以cn=$\frac{1}{{{a_n}+5n}}$=$\frac{1}{{n}^{2}+3n+2}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
所以S1=c1=$\frac{1}{6}$,
Sn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$=$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n}{2(n+2)}$.
點(diǎn)評(píng) 本題考查數(shù)列的求和,考查等差關(guān)系的確定,突出考查裂項(xiàng)相消法的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 13 | B. | 3 | C. | 52 | D. | 53 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 如果兩個(gè)復(fù)數(shù)的實(shí)部的差和虛部的差都等于0,那么這兩個(gè)復(fù)數(shù)相等 | |
B. | 若a,b∈R且a>b,則ai>bi | |
C. | 如果復(fù)數(shù)x+yi是實(shí)數(shù),則x=0,y=0 | |
D. | 復(fù)數(shù)a+bi不是實(shí)數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,3) | B. | (-2,2) | C. | (-3,2) | D. | (-3,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第342項(xiàng) | B. | 第343項(xiàng) | C. | 第344項(xiàng) | D. | 第345項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com