已知不等式(x+y)(+)≥9對(duì)任意正實(shí)數(shù)x,y恒成立,則正實(shí)數(shù)a的最小值為(    )

A.8                  B.6                   C.4                  D.2

解析:x,y∈R+,∴(x+y)(+)=1+a++≥1+a+2.

    當(dāng)且僅當(dāng)=即y2=ax2時(shí)“=”成立.

    由題意得1+a+2≥9.  a≥4.

答案:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式(x+y)(
1
x
+
a
y
)≥9
對(duì)任意x、y的正實(shí)數(shù)恒成立,求正數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式
x+y≤1
x-y≥-1
y≥0
表示的平面區(qū)域?yàn)镸,若直線y=kx-3k與平面區(qū)域M有公共點(diǎn),則k的范圍是
[-
1
3
,0]
[-
1
3
,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式
|x-y|≤1
|x+y|≤a
組表示的平面區(qū)域的面積是8,則a的值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式(x+y)(
1
x
+
a
y
)≥9
,對(duì)任意正實(shí)數(shù)x,y恒成立,則正實(shí)數(shù)a的最小值是( 。
A、2
B、3
C、4
D、
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式(x+y)(+)≥9對(duì)任意正實(shí)數(shù)x、y恒成立,則正數(shù)a的最小值為(    )

A.2                   B.4                    C.6                 D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案