若0<α<
,-
<β<0,cos(
+α)=
,cos(
-β)
,則cos(α+β)=( 。
考點(diǎn):兩角和與差的余弦函數(shù)
專題:計(jì)算題,三角函數(shù)的求值
分析:由角的關(guān)系式:α+β=(
+α)-(
-β)即兩角和的余弦公式即可展開代入從而求值.
解答:
解:∵cos(
+α)=
,0<α<
,
∴
<
+α<
,
∴sin(
+α)=
=
,
∵cos(
-β)=
,-
<β<0,
∴
<
-β<
,
∴sin(
-β)=
=
,
∵α+β=(
+α)-(
-β),
∴cos(α+β)=cos[(
+α)-(
-β)]
=cos(
+α)cos(
-β)+sin(
+α)sin(
-β)
=
×+×=
=
.
故選:C.
點(diǎn)評:本題主要考察了兩角和與差的余弦函數(shù)公式的應(yīng)用,三角函數(shù)的求值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,角A、B、C所對應(yīng)的邊分別為a、b、c,A=
,sinB=
.
(1)求cosB的值;
(2)若2c=b+2,求邊長b.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知定義在R上的函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=8(1-|x-1|),且對任意的實(shí)數(shù)x∈[2
n-2,2
n+1-2](n∈N
+,且n≥2),都有f(x)=
f(
-1),若g(x)=f(x)-log
ax有且僅有三個零點(diǎn),則a的取值范圍為( 。
A、[2,10] |
B、[,] |
C、(2,10) |
D、(,) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
有20位同學(xué),編號從1-20,現(xiàn)在從中抽取4人的作文卷進(jìn)行調(diào)查,用系統(tǒng)抽樣方法確定所抽的編號為( 。
A、5,10,15,20 |
B、2,6,10,14 |
C、2,4,6,8 |
D、5,8,11,14 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
某班某次數(shù)學(xué)考試成績好,中,差的學(xué)生人數(shù)之比為3:5:2,現(xiàn)在用分層抽樣方法從中抽取容量為20的樣本,則應(yīng)從成績好的學(xué)生中抽取
名學(xué)生.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若命題“?x∈R,使得x
2-(a+1)x+4≤0”為假命題,則實(shí)數(shù)a的取值范圍為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在?ABCD中,AC=
,BD=
,周長為18,則這個平行四邊形的面積為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
計(jì)算:(lg5)2+lg2×lg5+lg2.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知雙曲線C:
-
=1(a>0,b>0)的焦距為4,且經(jīng)過點(diǎn)(-3,2
).
(Ⅰ)求雙曲線C的方程和其漸近線方程;
(Ⅱ)若直線l:y=kx+2與雙曲線C有且只有一個公共點(diǎn),求所有滿足條件的k的取值.
查看答案和解析>>