已知橢圓C:=1(a>b>0)的離心率為,其左、右焦點分別是F1、F2,過點F1的直線l交橢圓C于E、G兩點,且△EGF2的周長為4.
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設(shè)P為橢圓上一點,且滿足 (O為坐標原點),當<時,求實數(shù)t的取值范圍.
解析: (1)由題意知橢圓的離心率e==,∴e2===,即a2=2b2.
又△EGF2的周長為4,即4a=4,∴a2=2,b2=1.
∴橢圓C的方程為+y2=1.
(2)由題意知直線AB的斜率存在,即t≠0.
設(shè)直線AB的方程為y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由,
得(1+2k2)x2-8k2x+8k2-2=0.
由Δ=64k4-4(2k2+1)(8k2-2)>0,得k2<.
x1+x2=,x1x2=,
∵,∴(x1+x2,y1+y2)=t(x,y),x==[k(x1+x2)-4k]=.
∵點P在橢圓C上,∴=2,
∴16k2=t2(1+2k2).
∵∴(1+k2)[(x1+x2)2-4x1x2]<,
∴(1+k2)<,
∴(4k2-1)(14k2+13)>0,∴k2>.
∴<k2<.
∵16k2=t2(1+2k2),∴t2==8-,
又<1+2k2<2,∴<t2=8-<4,
∴-2<t<-或<t<2,
∴實數(shù)t的取值范圍為
科目:高中數(shù)學 來源: 題型:
如圖所示,在邊長為4的正方形紙片ABCD中,AC與BD相交于點O,剪去△AOB,將剩余部分沿OC,OD折疊,使OA,OB重合,則以A,B,C,D,O為頂點的四面體的體積為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
若函數(shù)f(x)=2sin (-2<x<10)的圖象與x軸交于點A,過點A的直線l與函數(shù)的圖象交于B、C兩點,則=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓E:=1(a>b>0)的右焦點為F(3,0),過點F的直線交E于A,B兩點.若AB的中點坐標為(1,-1),則E的方程為( )
A=1 B. =1
C. =1 D. =1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知圓C經(jīng)過點A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若=-2,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
用數(shù)學歸納法證明不等式 (n>1,n∈N*)的過程中,用n=k+1時左邊的代數(shù)式減去n=k時左邊的代數(shù)式的結(jié)果是A,求代數(shù)式A.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)曲線2x2+2xy+y2=1在矩陣A= (a>0)對應(yīng)的變換作用下得到的曲線為x2+y2=1.
(1) 求實數(shù)a、b的值;
(2) 求A2的逆矩陣.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com