比較下列代數(shù)式的大小:a2+b2+
5
2
與2a+b+1.
考點(diǎn):不等式比較大小
專題:不等式的解法及應(yīng)用
分析:利用“作差法”、配方法即可比較出兩個數(shù)的大。
解答: 解:作差:a2+b2+
5
2
-(2a+b+1)=(a-1)2+(b-
1
2
)2
+
1
4
>0.
∴a2+b2+
5
2
>2a+b+1.
點(diǎn)評:本題考查了“作差法”、配方法比較兩個數(shù)的大小,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某社區(qū)共有居民600人,其中年齡在24~40歲的有288人,41~60歲的有192人,60歲以上的有120人.一社會調(diào)查機(jī)構(gòu)就該社區(qū)居民的月收入調(diào)查了100人.
(1)若采用分層抽樣,則41~60歲的居民中應(yīng)抽取多少人?
(2)將所得數(shù)據(jù)分為6組并繪制了以下頻率分布直方圖,求在這600人中收入在[3000,3500)段的人數(shù),并補(bǔ)全頻率分布直方圖;
(3)設(shè)樣本中收入在[3500,4000)段的居民中,居民甲與乙剛好來自于同一家庭,居民丙和丁來自于另一家庭,剩余的居民來自于不同家庭.現(xiàn)從這些居民中任取3人,則這3人均來自于不同家庭的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
x2-2x.求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=2x-1,0<x≤1},B={x|(x-a)[x-(a+3)]<0},分別根據(jù)下列條件,求實(shí)數(shù)a的取值范圍.
(1)A∪B=B;
(2)A∩B≠∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,數(shù)列{bn}是等比數(shù)列.
(1)若cn=(an+1-an)bn(n∈N*),求證:{cn}為等比數(shù)列;
(2)設(shè)cn=anbn(n∈N*),其中an是公差為2的整數(shù)項(xiàng)數(shù)列,bn=(
12
13
)n
,若c5>2c4>4c3>8c2>16c1,且當(dāng)n≥17時(shí),{cn}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{cn}使得{
anbn
cn
}
是等比數(shù)列,數(shù)列{dn}的前n項(xiàng)和為
an-cn
cn
,且數(shù)列{dn}滿足:對任意n≥2,n∈N*,或者dn=0恒成立或者存在正常數(shù)M,使
1
M
<|dn|<M恒成立,求證:數(shù)列{cn}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1
1
an2
+4
=1,記Sn=a12+a22…+an2,若S2n+1-Sn
m
30
,對任意n∈N*恒成立,
(1)求證:數(shù)列{
1
an2
}為等差數(shù)列;
(2)求正整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的方程為x-y=0,圓C的一般方程為x2+y2-2x=0,
(1)求圓C的圓心坐標(biāo)和半徑; 
(2)求直線l與圓心C的距離; 
(3)試判斷直線l與圓C的位置關(guān)系,若相交,則求直線l被圓C截得的弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某醫(yī)院,因?yàn)榛夹呐K病而住院的665名男性病人中,有214人禿頂,而另外772名不是因?yàn)榛夹呐K病而住院的男性病人中有175人禿頂.
(1)請列出2×2列聯(lián)表.
(2)請用獨(dú)立性檢驗(yàn)方法判斷禿頂與患心臟病是否有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程log2(x+4)-2x=0的一個根在區(qū)間[m,m+1]內(nèi),另一根在在區(qū)間[n,n+1]內(nèi),m,n∈Z,則m+n的值為
 

查看答案和解析>>

同步練習(xí)冊答案