若直線y=ax-1(a為常數(shù))與直線2ρ(cosθ+sinθ)=1平行,則a=
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:首先把極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程,進(jìn)一步利用直線平行的充要條件求出結(jié)果.
解答: 解:直線2ρ(cosθ+sinθ)=1
轉(zhuǎn)化成直角坐標(biāo)方程為:2x+2y-1=0
所以直線的斜率為k=-1,
由于兩直線平行
則:a=k=-1.
故答案為:-1
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,直線平行的充要條件.屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩個(gè)學(xué)校高三年級(jí)分別有1200人,1000人,為了了解兩個(gè)學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩個(gè)學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(1)計(jì)算x,y的值.
甲校乙校總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,請(qǐng)分別估計(jì)兩個(gè)學(xué)校數(shù)學(xué)成績(jī)的優(yōu)秀率.
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫右面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績(jī)有差異.
參考數(shù)據(jù)與公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

由列聯(lián)表中數(shù)據(jù)計(jì)算臨界值表
P(K≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線?⊥平面α,直線m?平面β,有下面四個(gè)命題:其中正確命題序號(hào)是
 

①α∥β⇒?⊥m;②α⊥β⇒?∥m;③?∥m⇒α⊥β;④?⊥m⇒α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
16
-
y2
9
=1的左、右焦點(diǎn)為F1,F(xiàn)2,其上一點(diǎn)P滿足PF1=5PF2,則點(diǎn)P到右準(zhǔn)線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果雙曲線的焦距、虛軸長(zhǎng)、實(shí)軸長(zhǎng)成等比數(shù)列,則離心率e為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長(zhǎng)為2
2
,則直線m的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+bx+c且f(-2)=f(4),則比較f(1)、f(-1)與c的大小結(jié)果為(用“<”連接起來(lái))
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若c=
6
,C=60°,a=2,則A=
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足:
x-2y+1≥0
x≤2
x+y-1≥0
,則z=
y
x
的取值范圍是( 。
A、[-
1
2
,
3
4
]
B、[
3
4
,2]
C、[-2,
1
2
]
D、[-
1
2
,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案