某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比為3∶4∶7,現(xiàn)用分層抽樣的方法抽取容量為n的樣本,樣本中A型號產(chǎn)品有15件,那么樣本容量n為________.

 

70

【解析】由題意設(shè)A、B、C三種產(chǎn)品的數(shù)量分別為3k、4k、7k,則,解得n=70.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習考點引領(lǐng)+技巧點撥第十章第6課時練習卷(解析版) 題型:解答題

某學(xué)校的籃球隊、羽毛球隊、乒乓球隊各有10名隊員,某些隊員不止參加了一支球隊,具體情況如圖所示,現(xiàn)從中隨機抽取一名隊員,求:

(1)該隊員只屬于一支球隊的概率;

(2)該隊員最多屬于兩支球隊的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習考點引領(lǐng)+技巧點撥第十章第4課時練習卷(解析版) 題型:解答題

袋內(nèi)裝有6個球,這些球依次被編號為1,2,3,…,6,設(shè)編號為n的球質(zhì)量為n2-6n+12(單位:g),如果從這些球中不放回的任意取出2個球(不受重量、編號的影響),求取出的兩球質(zhì)量相等的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習考點引領(lǐng)+技巧點撥第十章第3課時練習卷(解析版) 題型:填空題

已知2x1+1,2x2+1,2x3+1,…,2xn+1的方差是3,則x1,x2,x3,…,xn的標準差為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習考點引領(lǐng)+技巧點撥第十章第3課時練習卷(解析版) 題型:填空題

某籃球運動員在7天中進行投籃訓(xùn)練的時間(單位:min)用莖葉圖表示(如圖),圖中左列表示訓(xùn)練時間的十位數(shù),右列表示訓(xùn)練時間的個位數(shù),則該運動員這7天的平均訓(xùn)練時間為________min.

 

6

4

5

7

7

2

5

 

8

0

1

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習考點引領(lǐng)+技巧點撥第十章第2課時練習卷(解析版) 題型:填空題

某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本.用系統(tǒng)抽樣法,將全體職工隨機按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是________.若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取________人.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習考點引領(lǐng)+技巧點撥第十章第2課時練習卷(解析版) 題型:填空題

某中學(xué)高中一年級有400人,高中二年級有320人,高中三年級有280人,現(xiàn)從中抽取一個容量為200人的樣本,則高中二年級被抽取的人數(shù)為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習考點引領(lǐng)+技巧點撥第十章第1課時練習卷(解析版) 題型:填空題

下圖是一個算法流程圖,若輸入x的值為-4,則輸出y的值為________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習考點引領(lǐng)+技巧點撥第十一章第4課時練習卷(解析版) 題型:解答題

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的,用ξ表示取球終止所需要的取球次數(shù).

(1)求袋中原有白球的個數(shù);

(2)求隨機變量ξ的概率分布;

(3)求甲取到白球的概率.

 

查看答案和解析>>

同步練習冊答案