先求出P點分OB所成正比為2∶1,然后再用線段的定比分點公式,求得點。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線C的方程為,過拋物線C上一點P(x0,y0)(x 0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(P,A,B三點互不相同),且滿足.
(Ⅰ)求拋物線C的焦點坐標和準線方程;
(Ⅱ)設(shè)直線AB上一點M,滿足,證明線段PM的中點在y軸上;
(Ⅲ)當=1時,若點P的坐標為(1,-1),求∠PAB為鈍角時點A的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,給出定點A(a,0)  (a>0,a≠1)和直線lx=-1,B是直線l上的動點,∠BOA的角平分線交AB于點C,求點C的軌跡方程,并討論方程表示的曲線類型與a值的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系中,直線,,,上的兩動點,且,求使得四邊形周長最小時兩點的坐標及此時的最小周長

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


將圓上的點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130736172272.gif" style="vertical-align:middle;" />倍,得到曲線.設(shè)直線與曲線相交于、兩點,且,其中是曲線軸正半軸的交點.
(Ⅰ)求曲線的方程;
(Ⅱ)證明:直線的縱截距為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)P(a,b)(b≠0)是平面直角坐標系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點的交點
⑴.已知a=1,b=2,p=2,求點Q的坐標。
⑵.已知點P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點Q落在雙曲線4x2-4y2=1上。
⑶.已知動點P(a,b)滿足ab≠0,p=,若點Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知過點P(-2,m),Q(m,6)的直線的傾斜角為45°,則m的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知線段PQ兩端點的坐標分別為(-1,1)、(2,2),若直線l:x+my+m=0與線段PQ有交點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線的傾斜角的大小為         。

查看答案和解析>>

同步練習冊答案