(2012•佛山一模)已知點(diǎn)P是拋物線x2=4y上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)M(2,0)的距離與點(diǎn)P到該拋物線準(zhǔn)線的距離之和的最小值為( 。
分析:利用拋物線的定義,將拋物線x2=4y上的點(diǎn)P到該拋物線準(zhǔn)線的距離轉(zhuǎn)化為點(diǎn)P到其焦點(diǎn)F的距離,當(dāng)F、P、M共線時(shí)即可滿足題意,從而可求得距離之和的最小值.
解答:解:∵拋物線x2=4y的焦點(diǎn)F的坐標(biāo)為F(0,1),作圖如下,
∵拋物線x2=4y的準(zhǔn)線方程為y=-1,設(shè)點(diǎn)P到該拋物線準(zhǔn)線y=-1的距離為d,
由拋物線的定義可知,d=|PF|,
∴|PM|+d=|PM|+|PF|≥|FM|(當(dāng)且僅當(dāng)F、P、M三點(diǎn)共線時(shí)(P在F,M中間)時(shí)取等號(hào)),
∴點(diǎn)P到點(diǎn)M(2,0)的距離與點(diǎn)P到該拋物線準(zhǔn)線的距離之和的最小值為|FM|,
∵F(0,1),M(2,0),△FOM為直角三角形,
∴|FM|=
5

故選B.
點(diǎn)評(píng):本題考查拋物線的簡(jiǎn)單性質(zhì),著重考查拋物線的定義的應(yīng)用,突出轉(zhuǎn)化思想的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山一模)設(shè)n∈N*,圓Cn:x2+y2=
R
2
n
(Rn>0)與y軸正半軸的交點(diǎn)為M,與曲線y=
x
的交點(diǎn)為N(
1
n
,yn
),直線MN與x軸的交點(diǎn)為A(an,0).
(1)用n表示Rn和an
(2)求證:an>an+1>2;
(3)設(shè)Sn=a1+a2+a3+…+an,Tn=1+
1
2
+
1
3
+…+
1
n
,求證:
7
5
Sn-2n
Tn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山一模)某學(xué)校三個(gè)社團(tuán)的人員分布如下表(每名同學(xué)只參加一個(gè)社團(tuán))
合唱社 粵曲社 書法社
高一 45 30 a
高二 15 10 20
學(xué)校要對(duì)這三個(gè)社團(tuán)的活動(dòng)效果進(jìn)行抽樣調(diào)查,按分層抽樣的方法從社團(tuán)成員中抽取30人,結(jié)果合唱社被抽出12人,則這三個(gè)社團(tuán)人數(shù)共有
150
150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山一模)如圖,三棱錐P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點(diǎn),點(diǎn)F在PA上,且2PF=FA.
(1)求證:平面PAC平面BEF;
(2)求平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山一模)下列函數(shù)中既是奇函數(shù),又在區(qū)間(-1,1)上是增函數(shù)的為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•佛山一模)函數(shù)y=
3
sinx+sin(x+
π
2
)的最小正周期是

查看答案和解析>>

同步練習(xí)冊(cè)答案