一箱子內(nèi)有6個(gè)白球,5個(gè)黑球,一次摸出3個(gè)球,在已知它們顏色相同的情況下,該顏色為白色的概率是(  )
A、
4
33
B、
2
33
C、
2
3
D、
1
2
考點(diǎn):條件概率與獨(dú)立事件
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)題意,首先計(jì)算取出兩個(gè)球都是白球的情況數(shù)目,再計(jì)算取出兩球都是黑球的情況數(shù)目,兩者相加可得取出兩球顏色相同的情況數(shù)目,進(jìn)而由概率公式,計(jì)算可得答案.
解答: 解:6個(gè)白球中取3個(gè)白球有C63=20種,
5個(gè)黑球中取3個(gè)黑球有C53=10種,
則一次摸出3個(gè)球,它們的顏色相同的有30種;
故一次摸出3個(gè)球,在已知它們顏色相同的情況下,該顏色為白色的概率是
20
30
=
2
3

故選:C.
點(diǎn)評(píng):本題主要考查了概率的計(jì)算,關(guān)鍵是對(duì)條件“在已知它們的顏色相同的情況下”的理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)①f(x)=4x+
1
x
-5;②f(x)=|log2x|-(
1
2
x;③f(x)=|x-1|-
x
;命題甲:f(x)在區(qū)間(1,2)上是增函數(shù);命題乙:f(x)在區(qū)間(0,+∞]上恰有兩個(gè)零點(diǎn)x1,x2,且x1x2<1.能使命題甲、乙均為真命題的函數(shù)有(  )個(gè).
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B的對(duì)邊分別為a、b且A=2B,則
a
b
的取值范圍是(  )
A、(0,
3
B、(1,2)
C、(
1
2
,1)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an},{bn}滿足:an+2=2an+1+an,bn+2=bn+1+2bn(n∈N*),那么( 。
A、?n∈N*,an>bn⇒an+1>bn+1
B、?m∈N*,?n>m,an=bn
C、?m∈N*,?n>m,an>bn
D、?m∈N*,?n>m,an<bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以橢圓C:
x2
8
+
y2
5
=1的焦點(diǎn)為頂點(diǎn),以橢圓C的頂點(diǎn)為焦點(diǎn)的雙曲線的方程是( 。
A、
x2
8
-
y2
5
=1
B、
y2
5
-
x2
8
=1
C、
x2
3
-
y2
5
=1
D、
y2
5
-
x2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an=
n-
98
n-
99
,則這個(gè)數(shù)列的前30項(xiàng)中最大項(xiàng)和最小項(xiàng)分別是( 。
A、a1,a30
B、a1,a9
C、a10,a30
D、a10,a9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x的焦點(diǎn)為F,M為拋物線上的動(dòng)點(diǎn),又已知點(diǎn)N(-1,0),則
|MN|
|MF|
的取值范圍是(  )
A、[1,2
2
]
B、[
2
,
3
]
C、[
2
,2]
D、[1,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-3x2+6x,直線l1:x=t,l2:x=t+1(其中0≤t≤2,t為常數(shù)),若直線l1,l2,x軸與曲線y=f(x)所圍成的封閉圖形的面積為S(t).
(1)求S(t)的表達(dá)式;
(2)當(dāng)t變化時(shí),求S(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{a2n-1}是首項(xiàng)為1的等差數(shù)列,數(shù)列{a2n}是首項(xiàng)為2的等比數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),已知S3=a4,a3+a5=a4+2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)比較S2n與2n+n2的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案