16.已知函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$-…+$\frac{{x}^{2013}}{2013}$-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,則下列結(jié)論正確的是(  )
A.f(x)在(0,1)上恰有一個零點B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(-1,0)上恰有一個零點D.f(x)在(-1,0)上恰有兩個零點

分析 求得f(x)的導(dǎo)數(shù),討論x<1時,導(dǎo)數(shù)的符號,判斷單調(diào)性,計算f(0),f(1)和f(-1),可得符號,由零點存在定理,即可得到結(jié)論.

解答 解:函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$-…+$\frac{{x}^{2013}}{2013}$-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,
可得f′(x)=1-x+x2-x3+…+x2012-x2013+x2014
=(1-x)+x2(1-x)+…+x2012(1-x)+x2014
=(1-x)(1+x2+…+x2012)+x2014,
當(dāng)x<1時,1-x>0,f′(x)>0,
可得f(x)在(-∞,1)上遞增,
由f(0)=1>0,可得f(1)>0,即有f(x)在(0,1)無零點,則A,B均錯;
由f(-1)=1-1-$\frac{1}{2}$-$\frac{1}{3}$-…-$\frac{1}{2015}$<0,又f(x)在(-1,0)遞增,
由零點存在定理,可得f(x)在(-1,0)上恰有一個零點.
則C正確,D錯誤.
故選:C.

點評 本題考查函數(shù)的零點問題的解法,注意運用導(dǎo)數(shù)判斷單調(diào)性,運用函數(shù)零點存在定理,考查推理能力和判斷能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a=($\frac{2}{3}$)0.2,b=1.30.7,c=($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,則a,b,c的大小關(guān)系是(  )
A.a>c>bB.b>a>cC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,三個角滿足2A=B+C,且最大邊與最小邊分別是方程x2-12x+32=0的兩根,則△ABC外接圓的面積為( 。
A.16πB.64πC.124πD.156π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=x-$\frac{a-1}{x}$-alnx(a∈R).
(1)當(dāng)a=1時,求曲線y=f(x)在點($\frac{1}{2}$,$\frac{1}{2}$+ln2)處的切線方程;
(2)若x=1是函數(shù)f(x)的極大值點,求a的取值范圍;
(3)當(dāng)a<1時,在[$\frac{1}{e}$,e]上是否存在一點x0,使f(x0)>e-1成立?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a,b在區(qū)間$[{0,\sqrt{3}}]$上取值,則函數(shù)$f(x)=\frac{1}{3}a{x^3}+b{x^2}+\frac{1}{4}ax$在R上有兩個相異極值點的概率是( 。
A.$\frac{1}{4}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,三棱柱ABC-A1B1C1的各條棱長均為2,且側(cè)棱垂直于底面,則二面角C1-AB-C的正切值為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ex-ln(x+m).
(1)設(shè)x=0是f(x)的極值點,求函數(shù)f(x)在[1,2]上的最值;
(2)若對任意x1,x2∈[0,2]且x1>x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1,求m的取值范圍.
(3)當(dāng)m≤2時,證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c
(1)若a,b,c成等差數(shù)列,且sinA=2sinC,求cosB的值;
(2)若b=c=2,且函數(shù)f(x)=$\frac{1}{4}$x3-$\frac{3}{4}$x的極大值為cosA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)命題p:曲線y=x2+2x+2t-4與x軸沒有交點;命題q:方程$\frac{x^2}{4-t}$+$\frac{y^2}{t-2}$=1所表示的曲線是焦點在x軸的橢圓.
(1)若命題p為真命題,求實數(shù)t的取值范圍;
(2)如果“p∨q”為真命題,“p∧q”為假命題,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案