已知函數(shù)f(x)=|x-2a|+|x-a|,a∈R,a≠0.
(Ⅰ)當(dāng)a=1時(shí),解不等式:f(x)>2;
(Ⅱ)若b∈R且B≠0,證明:f(b)≥f(a),并說明等號(hào)成立時(shí)滿足的條件.
考點(diǎn):絕對(duì)值不等式的解法
專題:不等式的解法及應(yīng)用
分析:(1)將a=1代入,不等式化為具體的絕對(duì)值不等式,然后討論解之;
(Ⅱ)由題知f(a)=|a|,f(b)=|b-2a|+|b-a|=|2a-b|+|b-a|≥|2a-b+b-a|=|a|,得證.
解答: 解:(Ⅰ)因?yàn)閍=1,所以原不等式f(x)>2為|x-2|+|x-1|>2.
當(dāng)x≤1時(shí),原不等式化簡為1-2x>0,即x<
1
2
;當(dāng)1<x≤2時(shí),原不等式化簡為1>2,即x∈∅;
當(dāng)x>2時(shí),原不等式化簡為2x-3>2,即x>
5
2

綜上,原不等式的解集為{x|x<
1
2
或x>
5
2
}.…(5分)
(Ⅱ)由題知f(a)=|a|,
f(b)=|b-2a|+|b-a|=|2a-b|+|b-a|≥|2a-b+b-a|=|a|,
所以f(b)≥f(a),(8分)
又等號(hào)成立當(dāng)且僅當(dāng)2a-b與b-a同號(hào)或它們至少有一個(gè)為零.…(10分)
點(diǎn)評(píng):本題考查了絕對(duì)值不等式的解法;考查了討論的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列五個(gè)命題:
①log2x2=2log2x;
②A∪B=A的充要條件是B⊆A;
③將鐘的分針撥快10分鐘,則分針轉(zhuǎn)過的角度是60°;
④若y=ksinx+1,x∈R,則y的最小值為-k+1;
⑤若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax(x≥1)
對(duì)任意的x1≠x2都有
f(x2)-f(x2)
x2-x1
<0則實(shí)數(shù)a的取值范圍是(
1
7
1
3
).
其中正確命題的序號(hào)為
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐E-ABCD中,底面ABCD是正方形,AC與BD交于點(diǎn)O,EC⊥底面ABCD,F(xiàn)為BE的中點(diǎn).
(1)求證:平面BDE⊥平面ACE;
(2)已知CE=1,點(diǎn)M為線段BD上的一個(gè)動(dòng)點(diǎn),直線EM與平面ABCD所成角的最大值為
π
4

①求正方形ABCD的邊長;
②在線段EO上是否存在一點(diǎn)G,使得CG⊥平面BDE?若存在,求出
EG
EO
的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程(
1
3
)|x|-a-1=0
有解,則a的取值范圍是( 。
A、0<a≤1B、-1<a≤0
C、a≥1D、a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x-max+1+m-1(a>0,且a≠1);
(1)若m=1,解不等式f(x)>0;
(2)若a=2,且方程f(x)=-3有兩個(gè)不同的正根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知首項(xiàng)都是1的數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1-an+1bn+3bnbn+1=0
(I)令Cn=
an
bn
,求數(shù)列{cn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}為各項(xiàng)均為正數(shù)的等比數(shù)列,且b32=4b2•b6,求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=8x上一點(diǎn)P到y(tǒng)軸距離是6,則點(diǎn)p到該拋物線焦點(diǎn)的距離是( 。
A、12B、8C、6D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2m+8n<2
2
,則點(diǎn)(m,n)必在( 。
A、直線x+y=1的左下方
B、直線x+y=1的右上方
C、直線x+3y=1的左下方
D、直線x+3y=1的右上方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程2a•9sinx+4a•3sinx+a-8=0有解,則a的取值范圍是( 。
A、
8
31
≤a≤
72
23
B、a>0
C、0<a≤
8
31
D、a>0或a≤-8

查看答案和解析>>

同步練習(xí)冊(cè)答案