A. | (-∞,3] | B. | [11,+∞) | C. | (3,11) | D. | [3,11] |
分析 要使原式恒成立,只需 m2-14m≤f(x)min,然后再利用導(dǎo)數(shù)求函數(shù)f(x)=-x3-2x2+4x,當(dāng)x∈[-3,3]的最值即可.
解答 解:因為f(x)=-x3-2x2+4x,當(dāng)x∈[-3,3]
所以f′(x)=-3x2-4x+4,令f′(x)=0得x=$\frac{2}{3}$或x=-2,
因為該函數(shù)在閉區(qū)間[-3,3]上連續(xù)可導(dǎo),且極值點處的導(dǎo)數(shù)為零,
所以最小值一定在端點處或極值點處取得,
而f(-3)=-3,f(-2)=-8,f($\frac{2}{3}$)=$\frac{40}{27}$,f(3)=-33,
所以該函數(shù)的最小值為-33,
因為f(x)≥m2-14m恒成立,
只需m2-14m≤f(x)min,
即m2-14m≤-33,即m2-14m+33≤0
解得3≤m≤11.
故選:D.
點評 本題考查了不等式恒成立問題,一般是轉(zhuǎn)化為函數(shù)的最值問題來解決,而本題涉及到了可導(dǎo)函數(shù)在閉區(qū)間上的最值問題,因此我們只是從端點值和極值中找最值,而極值點處導(dǎo)數(shù)為零,因此最終是從導(dǎo)數(shù)為零、端點值中找的最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 16 | C. | 29 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{30}}{6}$ | B. | $\sqrt{7}$ | C. | $\frac{\sqrt{30}}{6}$或$\sqrt{7}$ | D. | $\frac{5}{6}$或7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com