【題目】已知.

(1)當(dāng)函數(shù)上的最大值為3時(shí),求的值;

(2)在(1)的條件下,若對(duì)任意的,函數(shù)的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),試確定的值.并求函數(shù)上的單調(diào)遞減區(qū)間.

【答案】(1);(2).

【解析】

1)利用輔助角公式化簡(jiǎn),再利用正弦函數(shù)的圖像和性質(zhì)求出上的最大值,即可得到實(shí)數(shù)的值;

(2)把的值代入中,求出的最小正周期為,根據(jù)函數(shù)的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),可得的值為,再由正弦函數(shù)的單調(diào)區(qū)間和整體思想求出減區(qū)間,再結(jié)合的范圍求出減區(qū)間。

(1)由已知得,

時(shí),

的最大值為,所以

綜上:函數(shù)上的最大值為3時(shí),

(2)當(dāng)時(shí), ,故的最小正周期為,

由于函數(shù)的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),

的值為.

又由,可得,

,

∴函數(shù)上的單調(diào)遞減區(qū)間為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直三棱柱的側(cè)面是正方形,點(diǎn)是側(cè)面的中心,,是棱的中點(diǎn)

(1)求證:平面

(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題是全稱量詞命題還是存在量詞命題.

1)梯形的對(duì)角線相等;

2)存在一個(gè)四邊形有外接圓

3)二次函數(shù)的圖象都與x軸相交;

4)存在一對(duì)實(shí)數(shù)xy,使成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當(dāng)時(shí),若函數(shù)存在與直線平行的切線,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),,若的最小值是,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,短軸的兩個(gè)端點(diǎn)分別為A,B,且滿足:,且橢圓經(jīng)過點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過點(diǎn)M的動(dòng)直線(與X軸不重合)與橢圓C相交于P,Q兩點(diǎn),在X軸上是否存在一定點(diǎn)T,無論直線如何轉(zhuǎn)動(dòng),點(diǎn)T始終在以PQ為直徑的圓上?若有,求點(diǎn)T的坐標(biāo),若無,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1

(2)若函數(shù)f(x)R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x3對(duì)任意xR恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,PA⊥底面ABCD,AD||BC,AD⊥CD,BC=2,AD=CD=1,MPB的中點(diǎn).

(1)求證:AM||平面PCD;

(2)求證:平面ACM⊥平面PAB;

(3)若PC與平面ACM所成角為30°,PA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案