【題目】已知集合,對于,定義AB的差為;AB之間的距離為

I)若,試寫出所有可能的A,B

II,證明:

i;

ii三個數(shù)中至少有一個是偶數(shù);

III)設(shè)中有m,且為奇數(shù))個元素,記P中所有兩元素間距離的平均值為,證明:

【答案】I;;

II)(i)見解析(ii)見解析

III)見解析

【解析】

I)根據(jù)定義,結(jié)合即可確定所有可能的AB;

II)(i)由,令,討論即可代入絕對值式子化簡,即可證明;(ii)設(shè),,,.記,設(shè)t是使成立的i的個數(shù),

結(jié)合(i)中的結(jié)論可得,由此可知,k,l,h三個數(shù)不可能都是奇數(shù),得證.

III)記P中所有兩個元素間距離的總和,設(shè)P中所有元素的第i個位置的數(shù)字中共有1,0,則可得,根據(jù)P為奇數(shù)可得,因而,即可證明不等式成立.

I)根據(jù)定義及,可知有以下四種情況:

;;

(Ⅱ)令,

i)證明:對

時,有,

時,有

所以

(ⅱ)證明:

設(shè),,

,,

,由(I)可知,

,

,

所以1的個數(shù)為k

1的個數(shù)為l

設(shè)t是使成立的i的個數(shù),則

由此可知,kl,h三個數(shù)不可能都是奇數(shù),

三個數(shù)中至少有一個是偶數(shù).

(Ⅲ)記P中所有兩個元素間距離的總和,

設(shè)P中所有元素的第i個位置的數(shù)字中共有10,

因為m為奇數(shù),所以,

時,取等號.

所以

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為,過點,的直線傾斜角為.

1)求橢圓的方程;

2)是否存在過點且斜率為的直線,使直線交橢圓于兩點,以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓與圓外切且與軸相切.

1)求圓心的軌跡的方程;

2)過作斜率為的直線交曲線,兩點,

①若,求直線的方程;

②過兩點分別作曲線的切線,,求證:,的交點恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中.

1)當時,求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,底面為梯形,,,且,,

I)求證:

II)求二面角_____的余弦值;

從①,②,③這三個條件中任選一個,補充在上面問題中并作答.注:如果選擇多個條件分別解答,按第一個解答計分.

III)若是棱的中點,求證:對于棱上任意一點,都不平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等腰直角中,,,點、分別是、的中點.現(xiàn)沿邊折起成如圖四棱錐,中點.

1)證明:;

2)當時,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調(diào)查高三學生數(shù)學成績與線上學習時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:

分數(shù)不少于120

分數(shù)不足120

合計

線上學習時間不少于5小時

4

19

線上學習時間不足5小時

合計

45

1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關(guān)”;

2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設(shè)抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:

AQI

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

重度污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.

i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;

ii)試問該企業(yè)7月、8月、9月這三個月因氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015秋海口校級期中)直線l過點(1,2)和第一、二、四象限,若直線l的橫截距與縱截距之和為6,求直線l的方程.

查看答案和解析>>

同步練習冊答案