已知拋物線的焦點為橢圓的右焦點,且橢圓的長軸長為4,M、N是橢圓上的的動點.
(1)求橢圓標準方程;
(2)設(shè)動點滿足:,直線與的斜率之積為,證明:存在定點使
得為定值,并求出的坐標;
(3)若在第一象限,且點關(guān)于原點對稱,垂直于軸于點,連接 并延長交橢圓于點,記直線的斜率分別為,證明:.
(1);(2)存在使得;(3)證明過程詳見試題解析.
【解析】
試題分析:(1)由雙曲線的焦點與橢圓的焦點重合求出橢圓中的,再由,求出所求橢圓方程為;(2)先設(shè),由,結(jié)合橢圓的標準方程可以得到使得為定值;(3)要證明就是要考慮,詳見解析.
試題解析:(1)由題設(shè)可知:因為拋物線的焦點為,
所以橢圓中的又由橢圓的長軸為4得
故
故橢圓的標準方程為:
(2)設(shè),
由可得:
由直線OM與ON的斜率之積為可得:
,即
由①②可得:
M、N是橢圓上的點,故
故,即
由橢圓定義可知存在兩個定點,
使得動點P到兩定點距離和為定值;
(3)設(shè),由題設(shè)可知 ,
由題設(shè)可知斜率存在且滿足.
將③代入④可得:⑤
點在橢圓,
故
考點:直線與圓錐曲線.
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
9y2 |
8 |
|
2 |
3 |
x2 |
a2 |
y2 |
b2 |
2 |
3 |
r1 |
r2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2m |
3 |
x2 |
4m2 |
y2 |
3m2 |
2m |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年上海市浦東新區(qū)高三4月高考預測(二模)理科數(shù)學試卷(解析版) 題型:解答題
(1)設(shè)橢圓:與雙曲線:有相同的焦點,是橢圓與雙曲線的公共點,且的周長為,求橢圓的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓”的方程為.設(shè)“盾圓”上的任意一點到的距離為,到直線的距離為,求證:為定值;
(3)由拋物線弧:()與第(1)小題橢圓弧:()所合成的封閉曲線為“盾圓”.設(shè)過點的直線與“盾圓”交于兩點,,且(),試用表示;并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓的長軸長是焦距的兩倍,其左、右焦點依次為、,拋物線的準線與軸交于,橢圓與拋物線的一個交點為.
(1)當時,求橢圓的方程;
(2)在(1)的條件下,直線過焦點,與拋物線交于兩點,若弦長等于的周長,求直線的方程;
(3)由拋物線弧和橢圓弧
()合成的曲線叫“拋橢圓”,是否存在以原點為直角頂點,另兩個頂點落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓的長軸長是焦距的兩倍,其左、右焦點依次為、,拋物線的準線與軸交于,橢圓與拋物線的一個交點為.
(1)當時,求橢圓的方程;
(2)在(1)的條件下,直線過焦點,與拋物線交于兩點,若弦長等于的周長,求直線的方程;
(3)由拋物線弧和橢圓弧
()合成的曲線叫“拋橢圓”,是否存在以原點為直角頂點,另兩個頂點落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com