16.設(shè)函數(shù)f'(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時,xf'(x)-f(x)<0成立,則f(x)>0的x的取值范圍是(-∞,-1)∪(0,1).

分析 由已知當(dāng)x>0時總有xf′(x)-f(x)>0成立,可判斷函數(shù)g(x)為增函數(shù),由已知f(x)是定義在R上的奇函數(shù),可證明g(x)為(-∞,0)∪(0,+∞)上的偶函數(shù),根據(jù)函數(shù)g(x)在(0,+∞)上的單調(diào)性和奇偶性,而不等式f(x)>0等價于xg(x)>0,分類討論即可求出.

解答 解:設(shè)g(x)=$\frac{f(x)}{x}$,則g(x)的導(dǎo)數(shù)為:
g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵當(dāng)x>0時總有xf′(x)<f(x)成立,
即當(dāng)x>0時,g′(x)恒小于0,
∴當(dāng)x>0時,函數(shù)g(x)=$\frac{f(x)}{x}$為減函數(shù),
又∵g(-x)=g(x),
∴函數(shù)g(x)為定義域上的偶函數(shù)
又∵g(-1)=$\frac{f(-1)}{-1}$=0,
∴函數(shù)g(x)的大致圖象如圖所示:
數(shù)形結(jié)合可得,不等式f(x)>0?x•g(x)>0
?$\left\{\begin{array}{l}{x>0}\\{g(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{g(x)<0}\end{array}\right.$,
?0<x<1或x<-1.
∴f(x)>0成立的x的取值范圍是(-∞,-1)∪(0,1).
故答案為:(-∞,-1)∪(0,1)

點評 本題考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,并由函數(shù)的奇偶性和單調(diào)性解不等式的應(yīng)用問題,是綜合題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知拋物線C:y2=8x的焦點是F,點M是拋物線C上的動點,點Q是圓A:(x-4)2+(y-1)2=1上的動點,則|MF|+|MQ|的最小值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若離散型隨機變量X的分布列為:
 X 0 1
 P 10a2-a 2-6a
則實數(shù)a的值為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ax3+bx2+c,其導(dǎo)函數(shù)f'(x)的圖象如圖,則函數(shù)f(x)的極小值為( 。
A.cB.a+b+cC.8a+4b+cD.3a+2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求cos<$\overrightarrow{AB},\overrightarrow{AC}$>;
(2)求以AB,AC為邊的平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在二項式(x2+$\frac{1}{x}}$)5的展開式中,含x項的系數(shù)是a,則${∫}_{1}^{a}$x-1dx=ln10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=log${\;}_{\frac{1}{e}}}$(x2+$\frac{1}{e}$)-|${\frac{x}{e}}$|,則使得f(x+1)<f(2x-1)成立x的范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.當(dāng)正數(shù)a,b,滿足$\frac{4}{a+5b}+\frac{1}{3a+2b}=6$時,則4a+7b的最小值$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow$,則四邊形ABCD的形狀是(  )
A.長方形B.平行四邊形C.菱形D.梯形

查看答案和解析>>

同步練習(xí)冊答案