分析 由已知當(dāng)x>0時總有xf′(x)-f(x)>0成立,可判斷函數(shù)g(x)為增函數(shù),由已知f(x)是定義在R上的奇函數(shù),可證明g(x)為(-∞,0)∪(0,+∞)上的偶函數(shù),根據(jù)函數(shù)g(x)在(0,+∞)上的單調(diào)性和奇偶性,而不等式f(x)>0等價于xg(x)>0,分類討論即可求出.
解答 解:設(shè)g(x)=$\frac{f(x)}{x}$,則g(x)的導(dǎo)數(shù)為:
g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵當(dāng)x>0時總有xf′(x)<f(x)成立,
即當(dāng)x>0時,g′(x)恒小于0,
∴當(dāng)x>0時,函數(shù)g(x)=$\frac{f(x)}{x}$為減函數(shù),
又∵g(-x)=g(x),
∴函數(shù)g(x)為定義域上的偶函數(shù)
又∵g(-1)=$\frac{f(-1)}{-1}$=0,
∴函數(shù)g(x)的大致圖象如圖所示:
數(shù)形結(jié)合可得,不等式f(x)>0?x•g(x)>0
?$\left\{\begin{array}{l}{x>0}\\{g(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{g(x)<0}\end{array}\right.$,
?0<x<1或x<-1.
∴f(x)>0成立的x的取值范圍是(-∞,-1)∪(0,1).
故答案為:(-∞,-1)∪(0,1)
點評 本題考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,并由函數(shù)的奇偶性和單調(diào)性解不等式的應(yīng)用問題,是綜合題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
X | 0 | 1 |
P | 10a2-a | 2-6a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c | B. | a+b+c | C. | 8a+4b+c | D. | 3a+2b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 長方形 | B. | 平行四邊形 | C. | 菱形 | D. | 梯形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com