(I)證明:取AB的中點(diǎn)O,連接EO,CO
∵AE=EB=,AB=2
∴△AEB為等腰直角三角形
∴EO⊥AB,EO=1
又∵AB=BC,∠ABC=60°
∴△ACB是等邊三角形
∴CO=,又EC=2
∴EC2=EO2+CO2,∴EO⊥CO
∴EO⊥平面ABCD,又EO平面EAB
∴平面EAB⊥平面ABCD
(II)以AB中點(diǎn)O為坐標(biāo)原點(diǎn),以O(shè)B所在直線為y軸,OE所在直線為z軸,建立空間直角坐標(biāo)系如圖所示,則
∴
設(shè)平面DCE的法向量
∴,即,解得 ,∴
設(shè)平面的法向量,
即,解得
∴,
∵
所以二面角A-EC-D的余弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年天津市高三第四次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=
(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年河北省邯鄲市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com