設(shè)數(shù)列{xn}滿足logaxn+1=1+logaxn(a>0,a≠1),若x1+x2+…+x100=100,則x101+x102+…+x200=
 
分析:先根據(jù)遞推公式和對數(shù)的運算性質(zhì),證明出數(shù)列是一個等比數(shù)列,再由等比數(shù)列的性質(zhì)和數(shù)列前100項的和求出式子的值.
解答:解:∵logaxn+1=1+logaxn,∴l(xiāng)ogaxn+1-logaxn=1,
log
xn+1
xn
a
=1,則
xn+1
xn
=a,
∴數(shù)列{xn}是以a為公比的等比數(shù)列,
∵x1+x2+…+x100=100,∴x101+x102+…+x200=a100x1+a100x2+…a100x100
=a100(x1+x2+…+x100)=100a100,
故答案為:100a100
點評:本題考查了等比數(shù)列數(shù)列的性質(zhì),以及等比數(shù)列求和,利用對數(shù)的運算性質(zhì)進行證明,一般來說只要數(shù)列求和,應(yīng)先研究數(shù)列的性質(zhì)再進行求和.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x+1)n(n∈N*),l是f(x)在點(1,f(1))處的切線,l與x軸的交點坐標為(xn,0),
(1)若數(shù)列{an}滿足an=(1-xn)(1-xn+1),求數(shù)列{an}的前n項和Sn;
(2)設(shè)bk表示(x+1)n的二項展開式的第k+1項的二項式系數(shù),求和
nk=1
kbk

查看答案和解析>>

同步練習冊答案