(2012•鷹潭模擬)已知函數(shù)f(x)=ax+lnx(a∈R)
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x2-2x+2,若對(duì)任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.
分析:(1)先求f(x)的導(dǎo)數(shù),再對(duì)參數(shù)a進(jìn)行討論,利用導(dǎo)數(shù)函數(shù)值的正負(fù),從而可求f(x)的單調(diào)區(qū)間;
(2)對(duì)任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等價(jià)于f(x)max<g(x)max,分別求出相應(yīng)的最大值,即可求得實(shí)數(shù)a的取值范圍.
解答:解:(1)f′(x)=a+
1
x
,x>0
…(2分)
當(dāng)a≥0時(shí),由于x∈(0,+∞),f′(x)>0,所以函數(shù)f(x)的單調(diào)增區(qū)間為(0,+∞),…(4分)
當(dāng)a<0時(shí),令f'(x)=0,得x=-
1
a

當(dāng)x變化時(shí),f'(x)與f(x)變化情況如下表:

所以函數(shù)f(x)的單調(diào)增區(qū)間為(0,-
1
a
),函數(shù)f(x)的單調(diào)減區(qū)間為(-
1
a
,+∞)
…(6分)
(2)由已知,轉(zhuǎn)化為f(x)max<g(x)max…(8分)
因?yàn)間(x)=x2-2x+2=(x-1)2+1,x∈[0,1],
所以g(x)max=2…(9分)
由(Ⅱ)知,當(dāng)a≥0時(shí),f(x)在(0,+∞)上單調(diào)遞增,值域?yàn)镽,故不符合題意.
(或者舉出反例:存在f(e3)=ae3+3>2,故不符合題意.)     …(10分)
當(dāng)a<0時(shí),f(x)在(0,-
1
a
)
上單調(diào)遞增,在(-
1
a
,+∞)
上單調(diào)遞減,
故f(x)的極大值即為最大值,f(-
1
a
)=-1+ln(-
1
a
)=-1-ln(-a)
,…(11分)
所以2>-1-ln(-a),解得a<-
1
e3
.…(12分)
點(diǎn)評(píng):本題重點(diǎn)考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查分類討論的數(shù)學(xué)思想,解題的關(guān)鍵是利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鷹潭模擬)已知三棱錐A-BOC,OA、OB、OC兩兩垂直且長(zhǎng)度均為6,長(zhǎng)為2的線段MN的一個(gè)端點(diǎn)M在棱OA上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在△BCO內(nèi)運(yùn)動(dòng)(含邊界),則MN的中點(diǎn)P的軌跡與三棱錐的面所圍成的幾何體的體積為
π
6
或36-
π
6
π
6
或36-
π
6
、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鷹潭模擬)已知函數(shù)y=f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí),xf′(x)<f(-x)成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=
3
f(
3
)
b=(lg3)f(lg3),  c=(log2
1
4
)f(log2
1
4
)
,則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鷹潭模擬)已知等比數(shù)列{an}中,公比q>1,且a1+a6=8,a3a4=12,則
a2012
a2007
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鷹潭模擬)如果函數(shù)f(x)=sin(ωπx-
π
4
) (ω>0)
在區(qū)間(-1,0)上有且僅有一條平行于y軸的對(duì)稱軸,則ω的取值范圍是
1
4
<ω≤
5
4
1
4
<ω≤
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鷹潭模擬)函數(shù)y=
1
x
•cosx
在坐標(biāo)原點(diǎn)附近的圖象可能是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案