已知橢圓的中心為原點(diǎn),長(zhǎng)軸長(zhǎng)為,一條準(zhǔn)線的方程為.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)射線與橢圓的交點(diǎn)為,過(guò)作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于 兩點(diǎn)(兩點(diǎn)異于).求證:直線的斜率為定值.

(Ⅰ)橢圓標(biāo)準(zhǔn)方程為:;(Ⅱ)詳見(jiàn)解析.

解析試題分析:(Ⅰ)由題設(shè)可得,解這個(gè)方程組,便可得的值.再利用求出,便得橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)首先求出點(diǎn)M的坐標(biāo)(這是一個(gè)確定的點(diǎn)).過(guò)M作兩條直線,這兩條直線是不定的,是動(dòng)直線,就用點(diǎn)斜式把這兩條直線的方程表示出來(lái),然后分別與橢圓方程聯(lián)立,可解出A、B兩點(diǎn)的坐標(biāo),然后用斜率公式求出直線的斜率.
試題解析:(Ⅰ)由準(zhǔn)線為知焦點(diǎn)在軸上,則可設(shè)橢圓方程為:
得:,所以橢圓標(biāo)準(zhǔn)方程為:
(Ⅱ)∵斜率k存在,不妨設(shè)k>0,求出M(,2).直線MA方程為,直線MB方程為
分別與橢圓方程聯(lián)立,可解出,.
.  ∴(定值).
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、直線與圓錐曲線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓,若焦點(diǎn)在軸上的橢圓 過(guò)點(diǎn),且其長(zhǎng)軸長(zhǎng)等于圓的直徑.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條互相垂直的直線與圓交于、兩點(diǎn),交橢圓于另一點(diǎn),設(shè)直線的斜率為,求弦長(zhǎng);
(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓以坐標(biāo)軸為對(duì)稱軸,且經(jīng)過(guò)點(diǎn).記其上頂點(diǎn)為,右頂點(diǎn)為.
(1)求圓心在線段上,且與坐標(biāo)軸相切于橢圓焦點(diǎn)的圓的方程;
(2)在橢圓位于第一象限的弧上求一點(diǎn),使的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),離心率為,過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn)
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),.
(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)為橢圓上的動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是拋物線上的點(diǎn),的焦點(diǎn), 以為直徑的圓軸的另一個(gè)交點(diǎn)為.
(Ⅰ)求的方程;
(Ⅱ)過(guò)點(diǎn)且斜率大于零的直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),的面積為,證明:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在軸上方有一段曲線弧,其端點(diǎn)、軸上(但不屬于),對(duì)上任一點(diǎn)及點(diǎn),,滿足:.直線,分別交直線兩點(diǎn).

(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線(a>0,b>0)的離心率,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離是
(Ⅰ)求雙曲線的方程及漸近線方程;
(Ⅱ)若直線y=kx+5 (k≠0)與雙曲線交于不同的兩點(diǎn)C、D,且兩點(diǎn)都在以A為圓心的同一個(gè)圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線,點(diǎn)P(-1,0)是其準(zhǔn)線與軸的焦點(diǎn),過(guò)P的直線與拋物線C交于A、B兩點(diǎn).
(1)當(dāng)線段AB的中點(diǎn)在直線上時(shí),求直線的方程;
(2)設(shè)F為拋物線C的焦點(diǎn),當(dāng)A為線段PB中點(diǎn)時(shí),求△FAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案