已知實(shí)數(shù)x、y滿足x2+y2=1.
(1)求y-2x的范圍;
(2)求x2+y2-4x-2y+5的范圍.
考點(diǎn):直線與圓的位置關(guān)系
專題:計(jì)算題,直線與圓
分析:把圓的普通方程化為參數(shù)方程,利用兩角和的正弦公式化簡,再利用正弦函數(shù)的有界性求得結(jié)論.
解答: 解:令x=cosα,y=sinα,則
(1)y-2x=sinα-2cosα=
5
sin(α+θ),
∴y-2x∈[-
5
5
];
(2)x2+y2-4x-2y+5=1-4cosα-2sinα+5=6-2
5
sin(α+β),
∴x2+y2-4x-2y+5∈[6-2
5
,6+2
5
].
點(diǎn)評(píng):本題考查圓的普通方程化為參數(shù)方程,考查兩角和的正弦公式、正弦函數(shù)的有界性,正確運(yùn)用圓的參數(shù)方程是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=(-a)n-1(a≠0),求這個(gè)數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cosx在x∈[0,
π
6
]時(shí)的變化率為
 
;在x∈[
π
3
π
2
]時(shí)的變化率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在(0,+∞)內(nèi)可導(dǎo),且f(ex)=x+ex,則f′(1)=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足
x≥0
y≥0
x-y+m≤0
x-2y+2≥0
,則z=2x-y的最大值為3,則m=( 。
A、-1
B、-
1
2
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=esinxln(tanx)的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知asinA+bsinB-
3
bsinA=csinC.
(1)求角C的值;
(2)若sinB=2cosA,a=2
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
sinx
|sinx|
+
|cosx|
cosx
+
tanx
|tanx|
的值域是( 。
A、{3}
B、{3,-1}
C、{3,1,-1}
D、{3,1,-1,-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:|1+lg0.001|+
lg2
1
2
-4lg2+4
+lg6-lg0.03.

查看答案和解析>>

同步練習(xí)冊(cè)答案