半徑為1的球面上的四點(diǎn)A,B,C,D是正四面體的頂點(diǎn),則A與B兩點(diǎn)間的球面距離為( 。
A、arccos(-
3
3
B、arccos(-
6
3
C、arccos(-
1
3
D、arccos(-
1
4
分析:由題意求出正四面體的棱長,利用余弦定理求出∠AOB,然后求出A與B兩點(diǎn)間的球面距離.
解答:解:半徑為1的球面上的四點(diǎn)A,B,C,D是正四面體的頂點(diǎn),所以正四面體擴(kuò)展為正方體的外接球與圓柱球相同,正方體的對角線就是外接球的直徑,所以正四面體的棱長為:
2
6
3
;
(
2
6
3
)
2
=2-2cos∠AOB

cos∠AOB=-
1
3

A與B兩點(diǎn)間的球面距離為:1×arccos(-
1
3
)=arccos(-
1
3

故選C.
點(diǎn)評:本題是基礎(chǔ)題,考查正四面體的外接球的知識,考查空間想象能力,計算能力,球面距離的求法,是?碱}型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B、C、D是半徑為1的球面上的四個不同點(diǎn),且滿足
AB
AC
=0,
AC
AD
=0,
AD
AB
=0,用S1、S2、S3分別表示△ABC、△ACD、ABD的面積,則S1+S2+S3的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連接球面上兩點(diǎn)的線段稱為球的弦,半徑為4的球的兩條弦AB、CD的長度分別為2
7
和4
3
,M、N分別是AB、CD的中點(diǎn),兩條弦的兩端都在球面上運(yùn)動,有下面四個命題:
①弦AB、CD可能相交于點(diǎn)M;
②弦AB、CD可能相交于點(diǎn)N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省贛州市于都中學(xué)高三(下)強(qiáng)化訓(xùn)練數(shù)學(xué)試卷2(理科)(解析版) 題型:解答題

設(shè)A、B、C、D是半徑為1的球面上的四個不同點(diǎn),且滿足=0,=0,=0,用S1、S2、S3分別表示△ABC、△ACD、ABD的面積,則S1+S2+S3的最大值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省新鄉(xiāng)市衛(wèi)輝高級中學(xué)高三(下)2月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)A、B、C、D是半徑為1的球面上的四個不同點(diǎn),且滿足=0,=0,=0,用S1、S2、S3分別表示△ABC、△ACD、ABD的面積,則S1+S2+S3的最大值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省內(nèi)江市、廣安市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)A、B、C、D是半徑為1的球面上的四個不同點(diǎn),且滿足=0,=0,=0,用S1、S2、S3分別表示△ABC、△ACD、ABD的面積,則S1+S2+S3的最大值是   

查看答案和解析>>

同步練習(xí)冊答案