已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及當(dāng)取何值時(shí)函數(shù)分別取得極大和極小值.
(1)
(2)當(dāng)時(shí)有極大值;
當(dāng)時(shí)有極小值

試題分析:解:(1)由已知,切點(diǎn)為,故有,
①           1分
 ,由已知, .
  ②  3分
聯(lián)立①②,解得,
于是函數(shù)解析式為  5分
(2)
,令  6分
當(dāng)函數(shù)有極值時(shí),方程必有實(shí)根,
,得 .  8分
①當(dāng)時(shí), 有實(shí)根,在左右兩側(cè)均有,故函數(shù)無極值.
②當(dāng)時(shí), 有兩個(gè)實(shí)根, ,
當(dāng)變化時(shí), 的變化情況如下表:
x
(-∞,x1)
x1
(x1,x2)
x2
(x2,+∞)
g′(x)
+
0
-
0
+
g(x)

極大值

極小值

11分
故當(dāng)時(shí),函數(shù)有極值:當(dāng)時(shí)有極大值;
當(dāng)時(shí)有極小值.  12分
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是實(shí)數(shù).若函數(shù)是定義在上的奇函數(shù),但不是偶函數(shù),則函數(shù)的遞增區(qū)間為__________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的零點(diǎn)的個(gè)數(shù)為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知yf(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2xx2.
(1)求x>0時(shí),f(x)的解析式;
(2)若關(guān)于x的方程f(x)=2a2a有三個(gè)不同的解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的值域?yàn)?u>       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

滿足對(duì)于時(shí)有恒成立,則稱函數(shù)上是“被k限制”,若函數(shù)在區(qū)間上是“被2限制”的,則的取值范圍為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) 
(I) 解關(guān)于的不等式
(II)若函數(shù)的圖象恒在函數(shù)的上方,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),證明:上為減函數(shù);
(2)若有兩個(gè)極值點(diǎn)求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)有四個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案