如圖,已知橢圓=1(2≤m≤5),過其左焦點(diǎn)且斜率為1的直線與橢圓及其準(zhǔn)線的交點(diǎn)從左到右的順序?yàn)锳、B、C、D,設(shè)f(m)=||AB|-|CD||.
(1)求f(m)的解析式;
(2)求f(m)的最值.
解:(1)設(shè)橢圓的半長(zhǎng)軸、半短軸及半焦距依次為a、b、c,則a2=m,b2=m-1,c2=a2-b2=1. ∴橢圓的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0). 故直線的方程為y=x+1. 又橢圓的準(zhǔn)線方程為x=±,即x=±m(xù). ∴A(-m,-m+1),D(m,m+1).考慮方程組消去y,得(m-1)x2+m(x+1)2=m(m-1). 整理得(2m-1)x2+2mx+2m-m2=0, Δ=4m2-4(2m-1)(2m-m2)=8m(m-1)2. ∵2≤m≤5, ∴Δ>0恒成立.xB+xC=. 又∵A、B、C、D都在直線y=x+1上, ∴|AB|=|xB-xA|==(xB-xA)·,|CD|=(xD-xC). ∴||AB|-|CD||=|xB-xA+xD-xC|=|(xB+xC)-(xA+xD)|. 又∵xA=-m,xD=m,∴xA+xD=0. ∴||AB|-|CD||=|xB+xC|· 。絴|·=(2≤m≤5). 故f(m)=,m∈[2,5]. (2)由f(m)=,可知f(m)=. 又2≤2≤2-, ∴f(m)∈[]. 故f(m)的最大值為,此時(shí)m=2; f(m)的最小值為,此時(shí)m=5. |
本題主要考查利用解析幾何的知識(shí)建立函數(shù)關(guān)系式,并求其最值,體現(xiàn)了圓錐曲線與代數(shù)間的科間綜合.要運(yùn)用到直線與圓錐曲線的交點(diǎn),韋達(dá)定理,根的判別式,利用單調(diào)性求函數(shù)的最值等知識(shí).第(1)問中,若注意到xa、xD為一對(duì)相反數(shù),則可迅速將||AB|-|CD||化簡(jiǎn).第(2)問,利用函數(shù)的單調(diào)性求最值是常用方法,在第(1)問中,要注意驗(yàn)證當(dāng)2≤m≤5時(shí),直線與橢圓恒有交點(diǎn). |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、理科數(shù)學(xué)(山東卷) 題型:044
如圖,已知橢圓=1(a>b>0)的離心率為.以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)時(shí)該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn).直線PF1和PF2與橢圓的焦點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程:
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1,k2,證明:k1·k2=l;
(Ⅲ)是否存在常數(shù),使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在.求λ的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓=1(a>b>0)過點(diǎn)(1,),離心率為,左、右焦點(diǎn)分別為F1、F2.點(diǎn)P為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2.
(ⅰ)證明:=2.
(ⅱ)問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,如圖,已知橢圓=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過點(diǎn)T(t,m)的直線TA,TB與此橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)設(shè)動(dòng)點(diǎn)P滿足PF2-PB2=4,求點(diǎn)P的軌跡;
(2)設(shè)x1=2,x2=,求點(diǎn)T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com