(理) x(1-
2
x
)6
的展開式中的常數(shù)項(xiàng)為( 。
分析:確定展開式的通項(xiàng),令x的指數(shù)為0,求得r的值,即可求得常數(shù)項(xiàng).
解答:解:由x(1-
2
x
)
6
可得展開式的通項(xiàng)為Tr+1=x
C
r
6
•(-
2
x
)6-r

r-6
2
=-1
,可得r=4
x(1-
2
x
)6
的展開式中的常數(shù)項(xiàng)為T4+1=
C
4
6
•(-2)2
=60
故選D.
點(diǎn)評:本題考查二項(xiàng)展開式,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)復(fù)數(shù)z=-lg(x2+2)-(2x+2-x-1)i(x∈R)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)整數(shù)m是從不等式x2-2x-8≤0的整數(shù)解的集合S中隨機(jī)抽取的一個元素,記隨機(jī)變量ξ=m2,則ξ的數(shù)學(xué)期望Eξ=
 

(文)已知集合A={x|-1<x<5,x∈Z},集合B={x|
x-14-x
>0,x∈Z}
.在集合A中任取一個元素x,則事件“x∈A∩B”發(fā)生的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)f(x)是定義在D上的函數(shù),若對任何實(shí)數(shù)α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,則稱f(x)為定義在D上的下凸函數(shù).
(1)試判斷函數(shù)g(x)=2x(x∈R),k(x)=
1x
 (x<0)
是否為各自定義域上的下凸函數(shù),并說明理由;
(2)若h(x)=px2(x∈R)是下凸函數(shù),求實(shí)數(shù)p的取值范圍;
(3)已知f(x)是R上的下凸函數(shù),m是給定的正整數(shù),設(shè)f(0)=0,f(m)=2m,記Sf=f(1)+f(2)+f(3)+…+f(m),對于滿足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年臨沂一模理)若f(x)=(1+2x)m+(1+3x)(m,n為正整數(shù))的展開式中x的系數(shù)為13,則x2的系數(shù)是       

查看答案和解析>>

同步練習(xí)冊答案