fx)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且x∈(a,b)時(shí),f'(x)>0,又

fa0,則( 

A. fx)在[ab]上單調(diào)遞增,且fb)>0

B. fx)在[ab]上單調(diào)遞增,且fb)<0

C. fx)在[ab]上單調(diào)遞減,且fb)<0

D. fx)在[ab]單調(diào)遞增,但fb)的符號無法判斷

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、若f(x)在定義域[a,b]上有定義,則在該區(qū)間上( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
f′(x)<0;②(a,b)上的點(diǎn)x0為f(x)的極值點(diǎn)的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點(diǎn)x0,則x0一定是f(x)的最值點(diǎn);④f(x)在(a,b)上一點(diǎn)x0的左右兩側(cè)的導(dǎo)數(shù)異號的充要條件是點(diǎn)x0是函數(shù)f(x)的極值點(diǎn).其中正確命題的序號為
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4x+6,
(1)若f(x)在區(qū)間[m,m+1]上單調(diào)遞減,求實(shí)數(shù)m的取值范圍;
(2)若f(x)在區(qū)間[a,b](a<b)上的最小值為a,最大值為b,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有( 。﹤(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)的極值,下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案