如圖,直線PA與圓O相切于點A,PBC是過點O的割線,∠APC的角平分線交AC于點E,交AB于點D,點H是線段ED的中點,連接AH并延長PC交于點F.證明:A,E,F(xiàn),D四點共圓.
考點:與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:連接EF,證明EF∥AB,再證明∠AFE=∠ADE,即可證明A,E,F(xiàn),D四點共圓.
解答: 證明:連接EF,則
∵直線PA與圓O相切于點A,PBC是過點O的割線,∠APC的角平分線交AC于點E,
∴∠PAB=∠PCA,∠APE=∠CPE,
∴∠ADP=∠PEC,△PAC∽△PBA
∴∠AED=∠ADE,
AC
AB
=
PC
PA

∵點H是線段ED的中點,
∴AF平分∠CAB,
CF
FB
=
AC
AB
,
∵∠APC的角平分線交AC于點E,
CE
EA
=
PC
PA

CE
EA
=
CF
FB
,
∴EF∥AB,
∵AB⊥AC,
∴EF⊥AC,
∴∠AEH=∠AFE,
∴∠AFE=∠ADE,
∴A,E,F(xiàn),D四點共圓.
點評:本小題主要考查與圓有關(guān)的比例線段、四點共圓的證明方法、三角形相似等基礎(chǔ)知識,考查運算求解能力、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合P={x||x-1|≤
1
2
,x∈R},Q={x|x∈N},則P∩Q等于( 。
A、[0,1]B、{0,1}
C、{1}D、{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科做)如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(1)設(shè)BE=x,問當x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值.
(2)當BE=1,是否在折疊后的AD上存在一點P,使得CP∥平面ABEF?若存在,求出AP的長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex,g(x)=mx+n.
(1)設(shè)h(x)=f(x)-g(x).
①若函數(shù)h(x)在x=0處的切線過點(1,0),求m+n的值;
②當n=0時,若函數(shù)h(x)在(-1,+∞)上沒有零點,求m的取值范圍;
(2)設(shè)函數(shù)r(x)=
1
f(x)
+
nx
g(x)
,且n=4m(m>0),求證:當x≥0時,r(x)≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=2cos(-3x+
π
4
)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是橢圓
x2
4
+
y2
3
=1的兩個焦點,P是橢圓上一點且∠F1PF2=30°,則△PF1F2的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC=3,BC=2,∠ABC的平分線交BC的平行線于點D,則△ABD的面積為( 。
A、3
2
B、
9
2
C、3
3
D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△OAB中,已知P為線段AB上一點,
OP
=x
OA
+y
OB
,
BP
PA
(λ為實數(shù)),OA=4,OB=2,∠AOB=60°
(1)當λ=1時,求x,y的值;
(2)當λ=3時,求
OP
AB
的值;
(3)當2≤λ≤3時,求
OP
AB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地計劃建設(shè)一個外墻側(cè)面面積為1500m2的倉儲,現(xiàn)有兩種方案,一是倉儲外墻設(shè)計正四棱錐的側(cè)面(如圖a),四個側(cè)面均為底邊長為30m的等腰三角形;二是倉儲外墻設(shè)計為面半徑為20m的圓錐的側(cè)面(如圖b),請問選用哪一種方案能使倉儲的空間更大一些,并說明理由.

查看答案和解析>>

同步練習冊答案