直線y=x與橢圓
x2
4
+y2
=1相交于A,B兩點,則|AB|=(  )
A、2
B、
4
5
5
C、
4
10
5
D、
8
10
5
考點:直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設出直線的方程,代入橢圓方程中消去y,求出橫坐標,利用弦長公式求得|AB|的值.
解答: 解:將y=x代入
x2
4
+y2
=1消去y得
5x2=4,
所以x1=
2
5
5
,x2=-
2
5
5
,
由弦長公式得
|AB|=
1+12
|x2-x1|•=
4
10
5

故選:C.
點評:本題主要考查了橢圓的應用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達定理,判別式找到解決問題的突破口.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

為了解我縣中學生的體質(zhì)狀況,對天義地區(qū)部分中學生進行了身高、體重和肺活量的抽樣調(diào)查.現(xiàn)隨機抽取100名學生,測得其身高情況如下表所示.
分組頻數(shù)頻率
[155,160)0.050
[160,165)200.200
[165,170)
[170,175)300.300
[175,180)100.100
合計1001.00
(1)請在頻率分布表中的①、②、③位置填上相應的數(shù)據(jù),并補全頻率分布直方圖,再根據(jù)頻率分布直方圖估計眾數(shù)的值;
(2)若按身高分層抽樣,抽取20人參加慶“五一”全民健身運動,其中有3名學生參加越野比賽,記這3名學生中“身高低于165cm”的人數(shù)為ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某選手參加演講比賽的一次評委打分如莖葉圖所示,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( 。
A、86.5,1.5
B、86.5,1.2
C、86,1.5
D、86,1.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定積分
2
2
4-x2
dx的值為(  )
A、
π
2
B、
π
3
C、
π
2
-1
D、
π
3
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知f(B)=4sinBsin2
π
4
+
B
2
)+cos2B,且|f(B)-m|<2恒成立,則實數(shù)m的范圍是( 。
A、(2,4]
B、(1,3]
C、(1,2]
D、(-2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四邊形ABCD中,
AB
=
DC
=(1,0),
BA
|
BA|
+
BC
|
BC
|
=
BD
|
BD
|
,則四邊形ABCD的面積是( 。
A、
3
2
B、
3
C、
3
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,AC邊上的高BH所在的直線方程為x-2y-5=0,則頂點C的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,周期為1且為奇函數(shù)的是(  )
A、y=1-sin2πx
B、y=tanπx
C、y=cos(πx+
π
2
D、y=cos2πx-sin2πx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,b2=ac,且a+c=3,cosB=
3
4
,則
AB
BC
=( 。
A、
3
2
B、-
3
2
C、3
D、-3

查看答案和解析>>

同步練習冊答案