分析:(Ⅰ)利用導(dǎo)數(shù)即可求得f(x)的單調(diào)區(qū)間;
(Ⅱ)(i)利用(Ⅰ)的結(jié)論即可求得a的值;
(ii)利用歸納推理,猜想當n≥3,n∈N時,2<a
n<
,利用數(shù)學(xué)歸納法證明,即可得出結(jié)論.
解答:
解:(Ⅰ)函數(shù)f(x)的定義域為(0,+∞),且f′(x)=
-
=
.…(1分)
當a≤0時,f′(x)>0,所以f(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞增;…(2分)
當a>0時,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.
所以f(x)的單調(diào)遞增區(qū)間為(a,+∞),單調(diào)遞減區(qū)間為(0,a).…(3分)
綜上述:a≤0時,f(x)的單調(diào)遞增區(qū)間是(0,+∞);
a>0時,f(x)的單調(diào)遞減區(qū)間是(0,a),單調(diào)遞增區(qū)間是(a,+∞).…(4分)
(Ⅱ)(。┯桑á瘢┲攁≤0時,f(x)無最小值,不合題意;…(5分)
當a>0時,[f(x)]
min=f(a)=1-a+lna=0…(6分)
令g(x)=1-x+lnx(x>0),則g′(x)=-1+
=
,
由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.
所以g(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞).
故[g(x)]
max=g(1)=0,即當且僅當x=1時,g(x)=0.
因此,a=1.…(8分)
(ⅱ)因為f(x)=lnx-1+
,所以a
n+1=f(a
n)+2=1+
+lna
n.
由a
1=1得a
2=2于是a
3=
+ln2.因為
<ln2<1,所以2<a
3<
.
猜想當n≥3,n∈N時,2<a
n<
.…(10分)
下面用數(shù)學(xué)歸納法進行證明.
①當n=3時,a
3=
+ln2,故2<a
3<
.成立.…(11分)
②假設(shè)當n=k(k≥3,k∈N)時,不等式2<a
k<
成立.
則當n=k+1時,a
k+1=1+
+lna
k,
由(Ⅰ)知函數(shù)h(x)=f(x)+2=1+
+lnx在區(qū)間(2,
)單調(diào)遞增,
所以h(2)<h(a
k)<h(
),又因為h(2)=1+
+ln2>2,
h(
)=1+
+ln
<1+
+1<
.
故2<a
k+1<
成立,即當n=k+1時,不等式成立.
根據(jù)①②可知,當n≥3,n∈N時,不等式2<a
n<
成立.…(13分)
因此,S
n=[a
1]+[a
2]+…+[a
n]=1+2(n-1)=2n-1…(14分)