設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時,求曲線y=f(x)在點(1,f(1))處的切線的斜率;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.
解:(1)當(dāng)m=1時,f(x)=-x3+x2,f′(x)=-x2+2x,故f′(1)=1.
所以曲線y=f(x)在點(1,f(1))處的切線的斜率為1.
(2)f′(x)=-x2+2x+m2-1
令f′(x)=0,解得x=1-m,或x=1+m.
因為m>0,所以1+m>1-m.
當(dāng)x變化時,f′(x),f(x)的變化情況如下表:
x
(-∞,1-m)
1-m
(1-m,1+m)
1+m
(1+m,+∞)
f′(x)

0

0

f(x)
?
極小值

極大值

所以f(x)在(-∞,1-m),(1+m,+∞)內(nèi)是減函數(shù),在(1-m,1+m)內(nèi)是增函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、已知的圖象如圖所示,且,則有
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

  設(shè)函數(shù)的導(dǎo)函數(shù)則數(shù)列的前n項的和為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)f(x)=-kx,.
(1)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)若k>0,且對于任意確定實數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+f(-x),求證:F(1)F(2)…F(n)>)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題13分)

20090520

 
已知函數(shù)為自然對數(shù)的底數(shù))

(Ⅰ)求的最小值;
(Ⅱ)設(shè)不等式的解集為P,且,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
設(shè)函數(shù)
(I)若當(dāng)時,不等式恒成立,求實數(shù)m的取值范圍;
(II)若關(guān)于x的方程在區(qū)間[0,2]上恰好有兩個相異的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)曲線在點(1,)處的切線與直線平行,則(    )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點處的切線方程是,則----------------(   )
A.a(chǎn)="1,b=1" B.a(chǎn)="-1,b=1" C.a(chǎn)="1,b=-1" D.a(chǎn)=-1,b=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是函數(shù)的反函數(shù),則的解集為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案