在平面直角坐標系xOy中,已知點P(1+2cosx,2+2cos2x)和點Q(cosx,-1),x∈R.
(Ⅰ)若向量
OP
OQ
垂直,求x的值.
(Ⅱ)定義函數(shù)f(x)=
OP
OQ
,x∈[0,π],求函數(shù)f(x)的值域.
考點:平面向量數(shù)量積的運算,數(shù)量積判斷兩個平面向量的垂直關系
專題:平面向量及應用
分析:(I)由向量
OP
OQ
垂直,可得
OP
OQ
=cosx-2cos2x=0,即可解出.
(II)由(I)可得f(x)=-2cos2x+cosx=-2(cosx-
1
4
)2+
1
8
,由x∈[0,π],可得cosx∈[-1,1].再利用二次函數(shù)的單調性即可得出.
解答: 解:(I)∵向量
OP
OQ
垂直,
OP
OQ
=(1+2cosx)cosx-(2+2cos2x)=cosx+2cos2x-2-2cos2x=cosx-2cos2x=0,
解得cosx=0或cosx=
1
2

∴x=kπ+
π
2
或x=2kπ±
π
3
(k∈Z).
(II)由(I)可得f(x)=-2cos2x+cosx=-2(cosx-
1
4
)2+
1
8
,
∵x∈[0,π],
∴cosx∈[-1,1].
∴f(x)∈[-3,
1
8
]
點評:本題考查了向量垂直與數(shù)量積的關系、二次函數(shù)的單調性、余弦函數(shù)的單調性,考查了推理能力和計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-x+alnx,其中a≠0.
(1)a=-6,求函數(shù)f(x)在[1,4]上的最值;
(2)設函數(shù)f(x)既有極大值,又有極小值,求實數(shù)a的取值范圍;
(3)求證:當n∈N*時,e n(n2-1)≥(n!)3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-x+
1
x
,g(x)=x2+x-b,y=f(x)圖象恒過定點P,且P點既在y=g(x)圖象上,又在y=f(x)的導函數(shù)的圖象上.
(1)求a,b的值;
(2)設h(x)=
f(x)
g(x)
,求證:當x>0且x≠1時,h(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中有一元人民幣兩枚,現(xiàn)依次有放回地隨機摸取3次,每次摸一枚硬幣.
(1)試問,一共有多少種不同的結果,列出所有可能的結果(其中正面朝上與反面朝上是不同的結果)
(2)若摸到正面朝上時得2分,摸到反面朝上得1分,求3次摸得總分為5分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),當x>1時,f(x)>0,且f(
x
y
)=f(x)-f(y),若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點A、B分別是橢圓
x2
a2
+
y2
b2
=1長軸的左、右端點,點F是橢圓的右焦點,其中A(-6,0),F(xiàn)(4,0)點P在橢圓上且位于x軸上方,
PA
PF
=0.
(Ⅰ)求橢圓的方程和離心率;
(Ⅱ)求點P的坐標;
(Ⅲ)設M(m,0)是橢圓長軸AB上的一點,M到直線AP的距離等于|m-6|,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從正方體的8個頂點中,任意選擇4個頂點,則這四個點可能是
①矩形的四個頂點;
②有三個面為等腰直角三角形,另一個面為等邊三角形的四面體的四個頂點;
③每個面都是等邊三角形的四面體的四個頂點;
④每個面都是直角三角形的四面體的四個頂點.
其中正確的結論是
 
.(請把所有正確結論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于圖中的正方體ABCD-A1B1C1D1,下列說法正確的有:
 

①P點在線段BD上運動,棱錐P-AB1D1體積不變;
②P點在線段BD上運動,直線AP與平面A1B1C1D1平行;
③一個平面α截此正方體,如果截面是三角形,則必為銳角三角形;
④一個平面α截此正方體,如果截面是四邊形,則必為平行四邊形;
⑤平面α截正方體得到一個六邊形(如圖所示),則截面α在平面AB1D1與平面BDC1間平行移動時此六邊形周長先增大,后減。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算
e
1
1
x
dx=
 

查看答案和解析>>

同步練習冊答案