已知f(x)=kx+
6
x
-4(k∈R),f(lg2)=0則.f(lg
1
2
)=
-8
-8
分析:令kx+
6
x
=g(x),則 g(x) 為奇函數(shù),f(x)=g(x)-4.由f(lg2)=0求得g(lg
1
2
)=-4,從而求得 f(lg
1
2
)=g(lg
1
2
)-4 的值.
解答:解:∵已知f(x)=kx+
6
x
-4(k∈R),令kx+
6
x
=g(x),則 g(x) 為奇函數(shù),f(x)=g(x)-4.
∵f(lg2)=0,
∴g((lg2)=4,
∴g(-lg2)=g(lg
1
2
)=-g((lg2)=-4,
故 f(lg
1
2
)=g(lg
1
2
)-4=-8,
故答案為-8.
點(diǎn)評(píng):本題主要考查應(yīng)用函數(shù)的奇偶性求函數(shù)值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=kx+b,且f(1)=-1,f(2)=-3.
(1)求f(x)的解析式;
(2)求f(a-1)的值;
(3)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)和數(shù)列{an}滿足下列條件:a1=a≠0,a2≠a1,當(dāng)n∈N*時(shí),an+1=f(an),且存在非零常數(shù)k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若數(shù)列{an}是等差數(shù)列,求k的值;
(2)求證:數(shù)列{an}為等比數(shù)列的充要條件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),數(shù)列{bn}的前n項(xiàng)是Sn,對(duì)于給定常數(shù)m,若
S(m+1)nSmn
的值是一個(gè)與n無關(guān)的量,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=kx+b(k<0),且f[f(x)]=4x+1,則f(x)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F(x)=kx+b的圖象與直線x-y-1=0垂直且在y軸上的截距為3,
(1)求F(x)的解析式;
(2)設(shè)a>2,解關(guān)于x的不等式
x2-(a+3)x+2a+3f(x)
<1

查看答案和解析>>

同步練習(xí)冊(cè)答案