2.已知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且?x∈(0,+∞),f[f(x)-lnx]=e+1,設(shè)a=f(($\frac{1}{2}$)${\;}^{\frac{1}{3}}$),b=f(($\frac{1}{3}$)${\;}^{\frac{1}{2}}$),c=f(log2π),則a,b,c的大小關(guān)系是c>a>b(用“>”號連接表示)

分析 由設(shè)t=f(x)-lnx,則f(x)=lnx+t,又由f(t)=e+1,求出f(x)=lnx+e,分析可得f(x)的單調(diào)性,進而分析可得($\frac{1}{3}$)${\;}^{\frac{1}{2}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<log2π;結(jié)合函數(shù)的單調(diào)性分析可得答案.

解答 解:根據(jù)題意,對任意的x∈(0,+∞),都有f[f(x)-lnx]=e+1,
又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),
則f(x)-lnx為定值,
設(shè)t=f(x)-lnx,
則f(x)=lnx+t,
又由f(t)=e+1,
即lnt+t=e+1,
解得:t=e,
則f(x)=lnx+e,(x>0)
則f(x)為增函數(shù),
又由($\frac{1}{2}$)${\;}^{\frac{1}{3}}$=$\root{3}{\frac{1}{2}}$=$\root{6}{\frac{1}{4}}$,($\frac{1}{3}$)${\;}^{\frac{1}{2}}$=$\sqrt{\frac{1}{3}}$=$\root{6}{\frac{1}{27}}$,log2π>1,
則有($\frac{1}{3}$)${\;}^{\frac{1}{2}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<log2π;
則有c>a>b;
故答案為:c>a>b.

點評 本題考查函數(shù)解析式的求法,以及函數(shù)單調(diào)性的判定以及應(yīng)用,關(guān)鍵是求出函數(shù)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知k≥-1,實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{3x-2y≥6}\\{y≥k}\end{array}\right.$,且$\frac{y+1}{x}$的最小值為k,則k的值為(  )
A.$\frac{2-\sqrt{2}}{5}$B.$\frac{2±\sqrt{2}}{5}$C.$\frac{3-\sqrt{5}}{2}$D.$\frac{3±\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)z滿足z(4+i)=3+i,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,已知直線l與橢圓C的極坐標(biāo)方程分別為ρcosθ+2ρsinθ+3$\sqrt{2}$=0,ρ2=$\frac{4}{co{s}^{2}θ+4si{n}^{2}θ}$
(Ⅰ)求直線l與橢圓C的直角坐標(biāo)方程;
(Ⅱ)若P是直線l上的動點,Q為橢圓C上的動點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在(1+x)n(n∈N*)二項展開式中x2的系數(shù)為15,則${∫}_{0}^{1}$xndx=( 。
A.$\frac{1}{7}$B.7C.15D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y<0}\\{x-y<0}\\{x+2>0}\end{array}\right.$,則$\frac{y+1}{x}$的取值范圍為( 。
A.(-$\frac{3}{2}$,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$]C.(-$\frac{3}{2}$,$\frac{1}{2}$)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.南北朝時期我國數(shù)學(xué)著作《張丘建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,的金四斤,持出,下四人后入得金三斤,持出,中間三人未到者,亦依等次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的八等人和九等人兩人所得黃金之和( 。
A.多$\frac{7}{12}$斤B.少$\frac{7}{12}$斤C.多$\frac{1}{6}$斤D.少$\frac{1}{6}$斤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費按行駛里程加用車時間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內(nèi)的情況如下:
時間(分鐘)[15,25)[25,35)[35,45)[45,55)[55,65]
次數(shù)814882
以各時間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費的時間視為用車時間,范圍為[15,65]分鐘.
(Ⅰ)若李先生上、下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)ξ是4次使用共享汽車中最優(yōu)選擇的次數(shù),求ξ的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.各項都是正數(shù)的數(shù)列{an}滿足an+1=2an,且a3•a11=16,則a5=( 。
A.1B.2C.4D.8

查看答案和解析>>

同步練習(xí)冊答案