分析 由設(shè)t=f(x)-lnx,則f(x)=lnx+t,又由f(t)=e+1,求出f(x)=lnx+e,分析可得f(x)的單調(diào)性,進而分析可得($\frac{1}{3}$)${\;}^{\frac{1}{2}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<log2π;結(jié)合函數(shù)的單調(diào)性分析可得答案.
解答 解:根據(jù)題意,對任意的x∈(0,+∞),都有f[f(x)-lnx]=e+1,
又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),
則f(x)-lnx為定值,
設(shè)t=f(x)-lnx,
則f(x)=lnx+t,
又由f(t)=e+1,
即lnt+t=e+1,
解得:t=e,
則f(x)=lnx+e,(x>0)
則f(x)為增函數(shù),
又由($\frac{1}{2}$)${\;}^{\frac{1}{3}}$=$\root{3}{\frac{1}{2}}$=$\root{6}{\frac{1}{4}}$,($\frac{1}{3}$)${\;}^{\frac{1}{2}}$=$\sqrt{\frac{1}{3}}$=$\root{6}{\frac{1}{27}}$,log2π>1,
則有($\frac{1}{3}$)${\;}^{\frac{1}{2}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<log2π;
則有c>a>b;
故答案為:c>a>b.
點評 本題考查函數(shù)解析式的求法,以及函數(shù)單調(diào)性的判定以及應(yīng)用,關(guān)鍵是求出函數(shù)的解析式.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2-\sqrt{2}}{5}$ | B. | $\frac{2±\sqrt{2}}{5}$ | C. | $\frac{3-\sqrt{5}}{2}$ | D. | $\frac{3±\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | 7 | C. | 15 | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{3}{2}$,$\frac{1}{2}$] | B. | (-∞,$\frac{1}{2}$] | C. | (-$\frac{3}{2}$,$\frac{1}{2}$) | D. | (-∞,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 多$\frac{7}{12}$斤 | B. | 少$\frac{7}{12}$斤 | C. | 多$\frac{1}{6}$斤 | D. | 少$\frac{1}{6}$斤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
時間(分鐘) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
次數(shù) | 8 | 14 | 8 | 8 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com